Categories: AstronomyChandra

Ancient Pulsar Still Pulsing

[/caption]
It may be old, but it ain’t dead. The Chandra X-Ray Observatory has found the oldest isolated pulsar ever detected. While this pulsar is ancient, this exotic object is still kicking and is surprisingly active. According to radio observations, the pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars — ones that have not been spun-up in a binary system — it is over 10 times older than the previous record holder. A team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra, and found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years.

At a distance of 770 light years, it is also one of the nearest pulsars we know of.

Pulsars are created when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them “pulsars”.

Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second.

J0108 in a combination of optical and X-ray. Image credit: X-ray: NASA/CXC/Penn State/G.Pavlov et al. Optical: ESO/VLT/UCL/R.Mignani et al.

Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar.

“This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins,” said Pavlov. “So, although it’s clearly fading as it ages, it is still more than holding its own with the younger generations.”

It’s likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star’s magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar.

The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so- called “pulsar death line,” where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe.

“We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range,” said co- author Oleg Kargaltsev of the University of Florida. “To understand the properties of ‘dying pulsars,’ it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission.”

The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought.

“Suddenly this pulsar became the record holder for its ability to make X-rays,” said Pavlov, “and our result became even more interesting without us doing much extra work.” The position of the pulsar seen by Chandra in X-rays in early 2007 is slightly different from the radio position observed in early 2001. This implies that the pulsar is moving at a velocity of about 440,000 miles per hour, close to a typical value for pulsars.

Currently the pulsar is moving south from the plane of the Milky Way galaxy, but because it is moving more slowly than the escape velocity of the Galaxy, it will eventually curve back towards the plane of the Galaxy in the opposite direction.

Source: NASA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

3 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

5 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

17 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

18 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

19 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

21 hours ago