Categories: Physics

Fermilab Scientists Discover Rare Single Top Quark

[/caption]
Scientists at Fermilab have observed particle collisions that produce single top quarks, a 1 in 20 billion find. This discovery confirms important parameters of particle physics, including the total number of quarks. Previously, top quarks had only been observed when produced by the strong nuclear force. That interaction leads to the production of pairs of top quarks. The production of single top quarks involves the weak nuclear force and is harder to identify experimentally. This observation occurred almost 14 years to the day of the top quark discovery in 1995.

Fermilab’s Tevatron, located near Chicago, Illinois is currently the world’s most powerful operating particle accelerator, and the discovery was made by scientists working on together on collaborations. Scientists say finding single top quarks has significance for the ongoing search for the Higgs particle.

The Fermilab accelerator complex. Credit: Fermilab

“Observation of the single top quark production is an important milestone for the Tevatron program,” said Dr. Dennis Kovar, Associate Director of the Office of Science for High Energy Physics at the U.S. Department of Energy. “Furthermore, the highly sensitive and successful analysis is an important step in the search for the Higgs.”

Searching for single-top production makes finding a needle in a haystack look easy. Only one in every 20 billion proton-antiproton collisions produces a single top quark. Even worse, the signal of these rare occurrences is easily mimicked by other “background” processes that occur at much higher rates.
Discovering the single top quark production presents challenges similar to the Higgs boson search in the need to extract an extremely small signal from a very large background. Advanced analysis techniques pioneered for the single top discovery are now in use for the Higgs boson search. In addition, the single top and the Higgs signals have backgrounds in common, and the single top is itself a background for the Higgs particle.

To make the single-top discovery, physicists of the CDF and DZero collaborations spent years combing independently through the results of proton-antiproton collisions recorded by their experiments, respectively.

CDF is an international experiment of 635 physicists from 63 institutions in 15 countries. DZero is an international experiment conducted by 600 physicists from 90 institutions in 18 countries.

The CDF detector, about the size of a 3-story house, weighs about 6,000 tons. Credit: Fermilab

Each team identified several thousand collision events that looked the way experimenters expect single top events to appear. Sophisticated statistical analysis and detailed background modeling showed that a few hundred collision events produced the real thing. On March 4, the two teams submitted their independent results to Physical Review Letters.

The two collaborations earlier had reported preliminary results on the search for the single top. Since then, experimenters have more than doubled the amount of data analyzed and sharpened selection and analysis techniques, making the discovery possible. For each experiment, the probability that background events have faked the signal is now only one in nearly four million, allowing both collaborations to claim a bona fide discovery that paves the way to more discoveries.

“I am thrilled that CDF and DZero achieved this goal,” said Fermilab Director Pier Oddone. “The two collaborations have been searching for this rare process for the last fifteen years, starting before the discovery of the top quark in 1995. Investigating these subatomic processes in more detail may open a window onto physics phenomena beyond the Standard Model.”

Source: Fermilab

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

3 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

5 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

18 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

18 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

20 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

22 hours ago