[/caption]
The European Space Agency’s Integral spacecraft has captured one of the brightest gamma-ray bursts ever seen. In looking at the data, astronomers have been able to investigate the initial phases of this giant stellar explosion, which ejected matter at velocities close to the speed of light. Astronomers also believe the explosion lifted a piece of the central engine’s magnetic field into space. The GRB reached Earth on December 19, 2004, and since then the Integral team has been meticulously dissecting the data.
Integral, an orbiting gamma-ray observatory, recorded the entire 2004 GRB event, providing information for what may prove to be one of the most important gamma-ray bursts (GRBs) seen in recent years. As the data was collected, astronomers saw the 500-second-long burst rise to extraordinary brilliance.
“It is in the top 1% of the brightest GRBs we have seen,” says Diego Götz, CEA Saclay, France, who headed the investigation.
The brightness of the event, known as GRB 041219A, has allowed the team to investigate the polarization of the gamma rays. Polarization refers to the preferred direction in which the radiation wave oscillates. For example Polaroid sunglasses work with visible light by letting through only a single direction of polarization, blocking most of the light from entering our eyes.
The team has shown that the gamma rays were highly polarized and varied tremendously in level and orientation.
The blast from a GRB is thought to be produced by a jet of fast-moving gas bursting from near the central engine; probably a black hole created by the collapse of the massive star. The polarization is directly related to the structure of the magnetic field in the jet. So it is one of the best ways for astronomers to investigate how the central engine produces the jet. Götz said there are a number of ways this might happen.
In the first scenario, the jet carries a portion of the central engine’s magnetic field into space. A second involves the jet generating the magnetic field far from the central engine. A third concerns the extreme case in which the jet contains no gas just magnetic energy, and a fourth scenario entails the jet moving through an existing field of radiation.
In each of the first three scenarios, the polarization is generated by what is called synchrotron radiation. The magnetic field traps particles, known as electrons, and forces them to spiral, releasing polarized radiation. In the fourth scenario, the polarization is imparted through interactions between the electrons in the jet and photons in the existing radiation field.
Götz believes that the Integral results favor a synchrotron model and, of those three, the most likely scenario is the first, in which the jet lifts the central engine’s magnetic field into space. “It is the only simple way to do it,” he says.
What Götz would most like to do is measure the polarization for every GRB, to see whether the same mechanism applies to all. Unfortunately, many GRBs are too faint for the current instrumentation to succeed. Even the state-of-the-art IBIS instrument on Integral can only record the polarization state of gamma rays if a celestial source is as bright as GRB 041219A.
“So, for now we just have to wait for the next big one,” he says.
Source: ESA
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…