This could be titled “87 Days of Fermi,” or “Blazing Galaxies:” This movie is made from the first 87 days of data gathered by Fermi’s Large Area Telescope (LAT), showing all the gamma ray sources detected so far, with active galaxies called blazars flaring and fading in this all-sky movie. “The movie shows counts of gamma rays seen by Fermi’s LAT, and each frame shows the gamma rays collected in one day,” said Elizabeth Hays, an astrophysicist on the Fermi team. Visible are rapid and dramatic flashes, which underscores one of the most valuable things Fermi does. “We watch the sky all the time and alert other telescopes, in space and on the ground, when something interesting is going on,” Hays said.
For higher resolution versions of the movie, click here.
Only gamma rays with energies greater than 300 million electron volts — or 150 million times more than that of visible light — are shown in the movie. Brighter colors indicate greater numbers of detected gamma rays and thus the locations of bright gamma-ray sources.
“One of the first things to notice in the movie is the source that arcs across the northern galactic sky. That’s the sun moving along the ecliptic plane,” Hays said. The sun appears to move through the sky because the Earth revolves around it. This is the same reason constellations progress through the sky during the year.
Another striking aspect of the movie is that, even far from the brightest gamma-ray sources, the sky is not dark. “We see a general background of gamma rays over the whole sky,” Hays said. Some of this glow is the result of cosmic rays colliding with gas and light in our own galaxy and producing gamma rays. But some of this emission originates from beyond our galaxy. “Although we don’t know exactly where all of these gamma rays are coming from, we know that some of them must be the collective radiation from galaxies we are not detecting directly,” she explained. It’s possible that something more exotic could also be contributing to this background glow, and Fermi is making measurements to test such ideas.
One galactic source lies far enough from the Milky Way’s plane that it stands out in the movie. “That’s PSR J1836+5925, one of the new class of pulsars discovered by Fermi,” Hays said. The pulsar is a fast-spinning neutron star that sends a broad fan of gamma rays toward us with each rotation. Neutron stars pack twice the mass of the sun into a sphere the size of Manhattan and can spin thousands of times in one second. “It looks steady in the movie because we have to add up gamma rays from many rotations to see the pulses,” she noted.
Most of the other bright sources in the movie are actually distant galaxies. Each of these active galaxies, called blazars, hosts a central black hole with a mass of a million suns. Somehow, the black hole produces extremely fast-moving jets of matter, and with blazars we’re looking almost directly down the jet. “The strong variations in brightness that you see during the movie tell us that something about these jets has changed,” Hays said.
One example is the blazar AO 0235+164, located 7.5 billion light-years away in the constellation Aries. “The flares we are seeing happened when the universe was about half of its current age,” she explained. “The LAT sees a very strong flare. The gamma rays increase by 30 to 40 times in a single day. On that day, AO 0235 became one of the brightest gamma-ray sources in the sky.”
Fermi’s LAT became the first gamma-ray telescope to see the blazar called PKS 1502+106. The galaxy, located 10 billion light-years away in the constellation Boötes, appeared suddenly, flared in brightness for a few days, and then faded away.
These movies illustrate clearly how dynamic the sky is in gamma rays over short periods of time. Interesting , too, is the range of objects that exhibit variability: pulsars, active galactic nuclei, blazars, anomalous X-ray pulsars, among others. There are objects in our own galaxy and others lie near the edge of the known universe. Interestingly, gamma rays from our own Sun appears quite feeble compared to other objects in the sky!
Amazing !
The power of these events are awesome!!
A great video!!
Is it just my computer, but I can’t get to previous posts on articles with several pages of comments? I had the same problem a few days ago, and now it looks like its back. Very frustrating.
That’s 87 kinds of pure awesome. As Jon mentioned, the rapid variability of the universe at these wavelengths is simply fascinating. It provides a brilliant contrast with the sub-glacial procession of phenomena at longer wavelengths.
Good stuff Fermi!
“… can spin thousands of times in one second” ?
well, a little less than that.
http://en.wikipedia.org/wiki/Millisecond_pulsar
… or is Wikipedia wrong on this?
thousends is a bit optimistic, but there are quick ones, the fastest sofar rotates 716 times each second.
http://www.nrao.edu/pr/2006/mspulsar/