Type 1a supernovae like 2005ke, above, are known to go off when one member of a star pair exceeds critical mass and kickstarts a runaway fusion reaction.
Researchers have long puzzled over why some of the explosions happen so fast. Now, a team of Chinese astronomers believes they’ve arrived at a probable cause for the earliest of the blasts.
Scientists have confirmed more and more type Ia supernovae, and found that about half of them explode less than 100 million years after their host galaxy’s main star formation period. But previous models for these systems did not predict that they could be this young — so Wang and his team set out to solve the mystery.
Employing a stellar evolution computer code, they performed calculations for about 2600 binary systems consisting of a white dwarf and a helium star, a hot blue star which has a spectrum dominated by emission from helium. They found that if the gravitational field of the white dwarf pulls material from a helium star and increases its mass beyond the Chandrasekhar limit, it will explode as a type Ia supernova within 100 million years of its formation.
“Type Ia supernovae are a key tool to determine the scale of the Universe so we need to be sure of their properties,” said research team member Zhanwen Han, also from the Yunnan Observatory. “Our work shows that they can take place early on in the life of the galaxy they reside in.”
The team now plans to model the properties of the companion helium stars at the moment of the supernova explosions, which could be verified by future observations from the Large sky Area Multi-Object fiber Spectral Telescope (LAMOST).
LEAD IMAGE CAPTION: Supernova 2005ke shown in optical, ultraviolet and X-ray wavelengths. When it was captured, this was the first X-ray image of a Type 1a, and it provided observational evidence that Type Ia come from the explosion of a white dwarf orbiting a red giant star. Credit: NASA/Swift/S. Immler
Source: Royal Astronomical Society. The paper is available here.
According to the United Nations, the world produces about 430 million metric tons (267 U.S.…
As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…
Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…
The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…
Neutron stars are extraordinarily dense objects, the densest in the Universe. They pack a lot…
Think of the Moon and most people will imagine a barren world pockmarked with craters.…