Categories: Astronomymilky way

Nearsighted No More: Astronomers Resolve Milky Way’s Mysterious X-Ray Glow

[/caption]

The map above details the Galactic ridge X-ray emission, first detected 25 years ago and observed recently by NASA’s Rossi X-ray Timing Explorer (RXTE) observatory. The inset shows the zoomed Chandra image of the region, close to the center of the galaxy. 

The mysterious — and formerly blurry — X-ray source puzzled astronomers for a quarter century, but a new paper release today by the journal Nature has helped to clear the air.

Region close to the Galactic Center obtained by Spitzer infrared telescope in three spectral band. The field of view of CHANDRA is shown by the white square. Credit: M. Revnivtsev

 

Lead author Mikhail Revnivtsev, of Munich Technical University in Garching, Germany, and his colleagues report that the formerly unresolved X-ray glow has a spectrum characteristic of a hot (100 million degrees Kelvin) optically thin plasma, with a prominent iron emission line.

But the gravitational well of the Galactic disk is far too shallow to confine such a hot interstellar medium; it would flow away at a velocity of a few thousand kilometers per second, exceeding the speed of sound in the gas.

Replenishing such energy losses would require a source that exceeds all plausible energy sources in the Milky Way — including supernovae — by orders of magnitude, they write.

Based on their observations, the team is proposing that the hot plasma is instead bound to many faint sources: plain old stars.

“Here we report that at energies of 6–7 keV, more than 80 percent of the seemingly diffuse X-ray emission is resolved into discrete sources, probably accreting white dwarfs and coronally active stars,” they write.

“Such stellar X-ray sources are of the common ‘garden variety’ in the Sun’s neighbourhood,” writes Michael Shull, an astrophysicist at the University of Colorado at Boulder, in an accompanying editorial. “However, at the distance of the Galactic ridge from Earth, their combined light becomes a diffuse blur, the X-ray equivalent of the many stars that make up the Milky Way, as Galileo first saw with his telescope in visible light.”

Shull notes that the results are a testament to the increased power of telescopes like Chandra, which de-mystified the source of the X-ray glow — and he cautions astronomers about describing faint backgrounds at all wavelengths, before getting a good look.

“As Revnivtsev and colleagues’ work demonstrates, sometimes the exotic explanation can be set aside by more accurate imaging and spectroscopy,” he writes.

LOWER IMAGE CAPTION: Region close to the Galactic Center obtained by Spitzer infrared telescope in three spectral band. The field of view of CHANDRA is shown by the white square. Credit: M. Revnivtsev

Source: Nature

Anne Minard

Anne Minard is a freelance science journalist with an academic background in biology and a fascination with outer space. Her first book, Pluto and Beyond, was published in 2007.

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

4 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

6 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

18 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

19 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

20 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

22 hours ago