Categories: NASASpace Flight

NASA is Running Out of Plutonium

[/caption]Decommissioning nuclear weapons is a good thing. But when our boldest space missions depend on surplus nuclear isotopes derived from weapons built at the height of the Cold War, there is an obvious problem.

If we’re not manufacturing any more nuclear bombs, and we are slowly decommissioning the ones we do have, where will NASA’s supply of plutonium-238 come from? Unfortunately, the answer isn’t easy to arrive at; to start producing this isotope, we need to restart plutonium production.

And buying plutonium-238 from Russia isn’t an option, NASA has already been doing that and they’re running out too…

This situation has the potential of being a serious limiting factor for the future of spaceflight beyond the orbit of Mars.

Exploration of the inner-Solar System should be OK, as the strength of sunlight is substantial, easily powering our robotic orbiters, probes and rovers. However, missions further afield will be struggling to collect the meagre sunlight with their solar arrays. Historic missions such as Pioneer, Voyager, Galileo, Cassini and New Horizons would not be possible without the plutonium-238 pellets.

So the options are stark: Either manufacture more plutonium or find a whole new way of powering our spacecraft without radioisotope thermal generators (RTGs). The first option is bound to cause some serious political fallout (after all, when there are long-standing policies in place to restrict the production of plutonium, NASA may not get a fair hearing for its more peaceful applications) and the second option doesn’t exist yet.

Although plutonium-238 cannot be used for nuclear weapons, launching missions with any kind of radioactive material on board always causes a public outcry (despite the most stringent safeguards against contamination should the mission fail on launch), and hopelessly flawed conspiracy theories are inevitable. RTGs are not nuclear reactors, they simply contain a number of tiny plutonium-238 pellets that slowly decay, emitting α-particles and generating heat. The heat is harnessed by thermocouples and converted into electricity for on board systems and robotic experiments.

RTGs also have astonishingly long lifespans. The Voyager probes for example were launched in 1977 and their fuel is predicted to keep them powered-up until 2020 at least. Next, the over-budget and delayed Mars Science Laboratory will be powered by plutonium-238, as will the future Europa orbiter mission. But that is about as far as NASA’s supply will stretch. After Europa, there will be no fuel left.

If plutonium-238 production is to be started again, a decision will need to be made soon. It will take eight years to start producing 5 kilograms of plutonium-238 per year, therefore any application for additional funding for plutonium-238 production for space exploration will need to be placed in next year’s budget.

Sources: New Scientist, Discovery.com

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Is the Universe a Fractal?

For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…

2 hours ago

How Did Black Holes Grow So Quickly? The Jets

A current mystery in astronomy is how supermassive black holes gained so much heft so…

10 hours ago

Quantum Correlations Could Solve the Black Hole Information Paradox

The black hole information paradox has puzzled physicists for decades. New research shows how quantum…

1 day ago

M87 Releases a Rare and Powerful Outburts of Gamma-ray Radiation

In April 2019, the Event Horizon Telescope (EHT) collaboration made history when it released the first-ever…

1 day ago

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

1 day ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

2 days ago