Categories: AstronomyBlack Holes

No Nature VS. Nurture for Stars

[/caption]

Stars don’t seem to mind where they grow up. Either in a nice quiet neighborhood or in the hellish environment near a supermassive black hole, astronomers were surprised to find the same proportions of low- and high-mass young stars in different types of star forming regions. Using the Very Large Telescope, astronomers snapped one of the sharpest views ever of the Arches Cluster — an extraordinary dense cluster of young stars near the supermassive black hole at the center of the Milky Way. “With the extreme conditions in the Arches Cluster, one might indeed imagine that stars won’t form in the same way as in our quiet solar neighbourhood,” says Pablo Espinoza, the lead author of the paper reporting the new results. “However, our new observations showed that the masses of stars in this cluster actually do follow the same universal law”.

The massive Arches Cluster is located 25 000 light-years away towards the constellation of Sagittarius. It contains about a thousand young, massive stars, less than 2.5 million years old. Astronomers say this region is an ideal laboratory to study how massive stars are born in extreme conditions, as the stars in the cluster experience huge opposing forces from all the activity going on near the supermassive black hole. The Arches Cluster is also ten times heavier than typical young star clusters scattered throughout our Milky Way and is enriched with chemical elements heavier than helium.

The Arches Cluster is located in the centre of the image, but its stars are hidden behind large amount of dust. The bright star at the top of the image is 3 Sagittarii, while the cluster of stars seen at the bottom left is NGC 6451. Credit: Digitized Sky Survey

Using the NACO adaptive optics on the VLT, astronomers were able to take the clearest images yet of the Arches Cluster. Observing the Arches Cluster is very challenging because of the huge quantities of light-absorbing dust between Earth and the Galactic Centre, which visible light cannot penetrate. This is why NACO was used to observe the region in near-infrared light.

The new study confirms the Arches Cluster to be the densest cluster of massive young stars known. It is about three light-years across with more than a thousand stars packed into each cubic light-year — an extreme density a million times greater than in the Sun’s neighborhood.
Astronomers studying clusters of stars have found that higher mass stars are rarer than their less massive brethren, and their relative numbers are the same everywhere, following a universal law.

The astronomers were also able to study the brightest stars in the cluster. “The most massive star we found has a mass of about 120 times that of the Sun,” says co-author Fernando Selman. “We conclude from this that if stars more massive than 130 solar masses exist, they must live for less than 2.5 million years and end their lives without exploding as supernovae, as massive stars usually do.”

The total mass of the cluster seems to be about 30,000 times that of the Sun, much more than was previously thought. “That we can see so much more is due to the exquisite NACO images,” says co-author Jorge Melnick.

Read the team’s paper.

Source: ESO

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

5 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

6 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago