Categories: Astronomy

Happy Fourth of July!

[/caption]

Astronomers working with the Subaru Telescope have released these new images of a “fireworks display” in a near-infrared image of the Helix Nebula, showing comet-shaped knots within.

Enlarged image, showing an enormous number of knots. The size of each knot is about five times as big as Pluto’s orbit in the Solar System

The Helix Nebula, NGC 7293, is not only one of the most interesting and beautiful planetary nebulae; it is also one of the closest nebulae to Earth, at a distance of only 710 light years away. The new image, taken with an infrared camera on the Subaru Telescope in Hawaii, shows tens of thousands of previously unseen comet-shaped knots inside the nebula. The sheer number of knots–more than have ever been seen before—looks like a massive fireworks display in space.

The Helix Nebula was the first planetary nebula in which knots were seen, and their presence may provide clues to what planetary material may survive at the end of a star’s life. Planetary nebulae are the final stages in the lives of low-mass stars, such as our Sun. As they reach the ends of their lives they throw off large amounts of material into space. Although the nebula looks like a fireworks display, the process of developing a nebula is neither explosive nor instantaneous; it takes place slowly, over a period of about 10,000 to 1,000,000 years. This gradual process creates these nebulae by exposing their inner cores, where nuclear burning once took place and from which bright ultraviolet radiation illuminates the ejected material.

Astronomers from the National Astronomical Observatory of Japan (NAOJ), from London, Manchester and Kent universities in the UK and from the University of Missouri in the US studied the emissions from hydrogen molecules in the infrared and found that knots are found throughout the entire nebula. Although these molecules are often destroyed by ultraviolet radiation in space, they have survived in these knots, shielded by dust and gas that can be seen in optical images. The comet-like shape of these knots results from the steady evaporation of gas from the knots, produced by the strong winds and ultraviolet radiation from the dying star in the center of the nebula.

Unlike previous optical images of the Helix Nebula knots, the infrared image shows thousands of clearly resolved knots, extending out from the central star at greater distances than previously observed. The extent of the cometary tails varies with the distance from the central star, just as Solar System comets have larger tails when they are closer to the Sun and when wind and radiation are stronger. “This research shows how the central star slowly destroys the knots and highlights the places where molecular and atomic material can be found in space,”says lead astronomer Dr. Mikako Matsuura, previously at NAOJ and now from University College London.

These images enable astronomers to estimate that there may be as many as 40,000 knots in the entire nebula, each of which are billions of kilometers/miles across. Their total mass may be as much as 30,000 Earths, or one-tenth the mass of our Sun. The origin of the knots is currently unknown.

This paper will be published in the Astrophysical Journal in August 2009

Final image caption: Previous optical image of the Helix Nebula, demonstrating diffuse gas surrounding a central star. The white box shows the area observed by the Subaru Telescope. Credit: NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner [STScI], and T.A. Rector [NRAO]

Source: NAO of Japan

Anne Minard

Anne Minard is a freelance science journalist with an academic background in biology and a fascination with outer space. Her first book, Pluto and Beyond, was published in 2007.

Recent Posts

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

8 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

13 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

1 day ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

2 days ago

Webb Confirms a Longstanding Galaxy Model

The spectra of distant galaxies shows that dying sun-like stars, not supernovae, enrich galaxies the…

3 days ago