Categories: Astronomy

New Technique Finds Farthest Supernovae

[/caption]
Two of the farthest supernovae ever detected have been found by using a new technique that could help find other dying stars at the edge of the universe. The two cosmic blasts occurred 11 billion years ago. The next-farthest large supernova known occurred about 6 billion years ago. Jeff Cooke from the University of California Irvine said this new method has the potential to allow astronomers to study some of the very first supernovae and will advance the understanding of how galaxies form, how they change over time and how Earth came to be.

A supernova occurs when a massive star (more than eight times the mass of the sun) dies in a powerful, bright explosion. Cooke studies larger stars (50 to 100 times the mass of the sun) that blow part of their mass into their surroundings before they die. When they finally explode, the nearby matter glows brightly for years.

Typically, cosmologists find supernovae by comparing pictures taken at different times of the same swath of sky and looking for changes. Any new light could indicate a supernova.

Cooke built upon this idea. He blended pictures taken over the course of a year, then compared them with image compilations from other years.

“If you stack all of those images into one big pile, then you can reach deeper and see fainter objects,” Cooke said. “It’s like in photography when you open the shutter for a long time. You’ll collect more light with a longer exposure.”

This image shows the host galaxy containing one of the newly discovered supernovae. Comparing the images shows how the galaxy visibly brightens in 2004 and then returns to normal. This suggested that in 2003 the supernova was not detected; it appeared in 2004 and was beginning to fade in 2005. The last frame subtracts the images from the years that the supernova was not detected as well as the galaxy’s light to reveal only the supernova. Credit: Jeff Cooke/CFHT

This image shows the host galaxy containing one of the newly discovered supernovae. Comparing the images shows how the galaxy visibly brightens in 2004 and then returns to normal. This suggested that in 2003 the supernova was not detected; it appeared in 2004 and was beginning to fade in 2005. The last frame subtracts the images from the years that the supernova was not detected as well as the galaxy’s light to reveal only the supernova. Credit: Jeff Cooke/CFHT

Doing this with images from the Cooke found four objects that appeared to be supernovae. He used a Keck telescope to look more closely at the spectrum of light each object emitted and confirmed they were indeed supernovae.

“The universe is about 13.7 billion years old, so really we are seeing some of the first stars ever formed,” Cooke said.

Cooke’s paper is published in the journal Nature on July 9.

Source: UC-Irvine

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

41 minutes ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

2 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

3 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

3 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

8 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

10 hours ago