Messier 45 - The Pleiades Cluster

Messier 45 - The Pleiades Cluster

Description:

"We present an analytic calculation of the thermonuclear depletion of the light elements lithium, beryllium, and boron in fully convective, low-mass stars. Under the presumption that the pre-main-sequence star is always fully mixed during contraction, we find that the burning of these rare light elements can be computed analytically, even when the star is degenerate. Using the effective temperature as a free parameter, we constrain the properties of low-mass stars from observational data, independently of the uncertainties associated with modeling their atmospheres and convection. Our analytic solution explains the dependence of the age at a given level of elemental depletion on the stellar effective temperature, nuclear cross sections, and chemical composition. These results are also useful as benchmarks to those constructing full stellar models. Most importantly, our results allow observers to translate lithium nondetections in young cluster members into a model-independent minimum age for that cluster. Using this procedure, we have found lower limits to the ages of the Pleiades (100 Myr) and Alpha Persei (60 Myr) clusters. Dating an open cluster using low-mass stars is also independent of techniques that fit upper main-sequence evolution. Comparison of these methods provides crucial information on the amount of convective overshooting (or rotationally induced mixing) that occurs during core hydrogen burning in the 5-10 Mo stars typically at the main-sequence turnoff for these clusters."

"The scattering geometry analysis is complicated by the blending of light from many stars and the likely presence of more than one scattering layer. Despite these complications, we conclude that most of the scattered light comes from dust in front of the stars in at least two scattering layers, one far in front and extensive, the other nearer the stars and confined to areas of heavy nebulosity. The first layer can be approximated as an optically thin, foreground slab whose line-of-sight separation from the stars averages ~0.7 pc. The second layer is also optically thin in most locations and may lie at less than half the separation of the first layer, perhaps with some material among or behind the stars. The association of nebulosity peripheral to the main condensation around the brightest stars is not clear. Models with standard grain properties cannot account for the faintness of the scattered UV light relative to the optical. Some combination of significant changes in grain model albedo and phase function asymmetry values is required. Our best-performing model has a UV albedo of 0.22+/-0.07 and a scattering asymmetry of 0.74+/-0.06. Hypothetical optically thick dust clumps missed by interstellar sight line measurements have little effect on the nebular colors but might shift the interpretation of our derived scattering properties from individual grains to the bulk medium."

"We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry that places it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity, and rotational broadening and to detect H? in emission and Li I in absorption. All the observed properties strongly support the membership of Teide 2 in the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades."

History of Observation:

Locating Messier 45:

  • Messier Objects – Messier 45: The Pleiades Cluster

  • Wikipedia – Pleiades

  • SEDS – Messier 45

  • Arecibo Observatory - The Pleiades