Categories: ChandraSpitzer

Trigger-Happy Star Formation in Cepheus B

[/caption]
Combining data from the Chandra X-Ray Observatory and the Spitizer Space Telescope allowed astronomers to create this gorgeous new image of Cepheus B. Besides being incredible eye candy, the new image also provides fresh insight into how some stars are born. The research shows that radiation from massive stars may trigger the formation of many more stars than previously thought.

While astronomers have long understood that stars and planets form from the collapse of a cloud of gas, the question of the main causes of this process has remained open.

“Astronomers have generally believed that it’s somewhat rare for stars and planets to be triggered into formation by radiation from massive stars,” said Konstantin Getman of Penn State University, and lead author of the study. “Our new result shows this belief is likely to be wrong.”

Chandra image of Cepheus B. Credit: NASA/Chandra team

The new study suggests that star formation in the region of study in this image, Cepheus B, is mainly triggered by radiation from one bright, massive star outside the molecular cloud. According to theoretical models, radiation from this star would drive a compression wave into the cloud triggering star formation in the interior, while evaporating the cloud’s outer layers. The Chandra-Spitzer analysis revealed slightly older stars outside the cloud while the youngest stars with the most protoplanetary disks congregate in the cloud interior — exactly what is predicted from the triggered star formation scenario.

“We essentially see a wave of star and planet formation that is rippling through this cloud,” said co-author Eric Feigelson, also of Penn State. “Outside the cloud, the stars probably have newly born planets while inside the cloud the planets are still gestating.”

Cepheus B is a cloud of mainly cool molecular hydrogen located about 2,400 light years from the Earth. There are hundreds of very young stars inside and around the cloud — ranging from a few millions years old outside the cloud to less than a million in the interior — making it an important testing ground for star formation.

Previous observations of Cepheus B had shown a rim of ionized gas around the molecular cloud and facing the massive star. However, the wave of star formation — an additional crucial feature to identifying the source of the star formation — had not previously been seen. “We can even clock how quickly this wave is traveling and it’s going about 2,000 miles per hour,” said Getman.

The star that is the catalyst for the star formation in Cepheus B, is about 20 times as massive as the Sun, or at least five times weightier than any of the other stars in Cepheus B.

The Chandra and Spitzer data also suggest that multiple episodes of star and planet formation have occurred in Cepheus B over millions of years and that most of the material in the cloud has likely already been evaporated or transformed into stars.

“It seems like this nearby cloud has already made most of its stars and its fertility will soon wane,” said Feigelson. “It’s clear that we can learn a lot about stellar nurseries by combining data from these two Great Observatories.”

A paper describing these results was published in the July 10 issue of the Astrophysical Journal.

Source: Chandra

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

17 hours ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

1 day ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

1 day ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago

Archaeology On Mars: Preserving Artifacts of Our Expansion Into the Solar System

In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…

2 days ago

Building the Black Hole Family Tree

Many of the black holes astronomers observe are the result of mergers from less massive…

2 days ago