Categories: Astronomy

White Dwarf “Close” to Exploding as Supernova

ESA’s XMM-Newton orbiting X-ray telescope has uncovered the first close-up of a white dwarf star that could explode into a type Ia supernova within a few million years. That’s relatively soon in cosmic time frames, and although this white dwarf that is orbiting its companion star HD 49798, is far enough away to pose no danger to Earth, it is close enough to become an extraordinarily spectacular celestial sight. Calculations suggest that it will blaze initially with the intensity of the full Moon and be so bright that it will be seen in the daytime sky with the naked eye. But don’t worry, it will be awhile!

Astronomers have been on the trail of this mysterious object since 1997, when they discovered that something was giving off X-rays near the bright star HD 49798. Now, thanks to XMM-Newton’s superior sensitivity, the mysterious object has been tracked along its orbit. The observation has shown it to be a white dwarf, the dead heart of a star, shining X-rays into space.

Sandro Mereghetti, INAF–IASF Milano, Italy, and collaborators also discovered that this is no ordinary white dwarf. They measured its mass and found it to be more than twice what they were expecting. Most white dwarfs pack 0.6 solar masses into an object the size of Earth.

This particular white dwarf contains at least double that mass but has a diameter just half that of Earth. It also rotates once every 13 seconds, the fastest of any known white dwarf.

The mass determination is reliable because the XMM-Newton tracking data allowed the astronomers to use the most robust method for ‘weighing’ a star, one that uses the gravitational physics devised by Isaac Newton in the 17th century. Most likely, the white dwarf has grown to its unusual mass by stealing gas from its companion star, a process known as accretion. At 1.3 solar masses, the white dwarf is now close to a dangerous limit.

When it grows larger than 1.4 solar masses, a white dwarf is thought either to explode or collapse to form an even more compact object called a neutron star. The explosion of a white dwarf is the leading explanation for ‘type Ia supernovae’, bright events that are used as standard beacons by astronomers to measure the expansion of the Universe. Until now, astronomers have not been able to find an accreting white dwarf in a binary system where the mass could be determined so accurately.

“This is the Rosetta stone of white dwarfs in binary systems. Our precise determination of the masses of the two stars is crucial. We can now study it further and try to reconstruct its past, so that we can calculate its future,” says Mereghetti.

So start telling your descendants to watch out for the spectacular show! (And hopefully no new hoax emails will be spawned about a supernova coming soon that will look as big as the full Moon to the naked eye a la the “Mars as big as the full Moon” hoax!)

Lead image caption: Illustration of the white dwarf and its companion HD49798. If it was possible to look at the system up-close, it would look something like this. Credits: Francesco Mereghetti, background image: NASA, ESA and T.M. Brown (STScI)

Source: ESA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Scientists Develop Technique to Create 3D Models of Cosmic Structures

For decades, astronomers have used powerful instruments to capture images of the cosmos in various…

4 hours ago

The Best Way to Find Planet Nine Might Be Hundreds of Tiny Telescopes

Although the outer Solar System is mostly empty, there are icy objects drifting within the…

5 hours ago

It Takes Very Special Conditions to Create This Bizarre Stellar Spectacle

A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…

5 hours ago

A New Look a the Most Ancient Light in the Universe

About 370,000 years after the Big Bang, the Universe had cooled down so light could…

7 hours ago

Space Tourism: The Good, The Bad, The Meh

Space tourism here is here to stay, and will likely remain a permanent fixture of…

12 hours ago

New Study Examines Cosmic Expansion, Leading to a New Drake Equation

In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…

1 day ago