Categories: Astronomy

Magnetic Fields Have Key Influence on Star Formation

[/caption]

When a giant cloud of interstellar gas and dust collapses to form a new cluster of stars, only a small fraction of the cloud’s mass ends up in stars. Scientists have never been sure why.  But a new study provides insights into the role magnetic fields might play in star formation, and suggests more than the influence of gravity should be taken into account in computer models of stellar birth.

Gravity favors star formation by drawing material together, so if most material does not coalesce into stars, some additional force must hinder the process. Magnetic fields and turbulence are the two leading candidates. Magnetic fields channel flowing gas, making it hard to draw gas from all directions, while turbulence stirs the gas and induces an outward pressure that counteracts gravity.

“The relative importance of magnetic fields versus turbulence is a matter of much debate,” said astronomer Hua-bai Li of the Harvard-Smithsonian Center for Astrophysics. “Our findings serve as the first observational constraint on this issue.”

Li and his team studied 25 dense patches, or cloud cores, each one about a light-year in size. The cores, which act as seeds from which stars form, were located within molecular clouds as much as 6,500 light-years from Earth.

The degree of polarization of light from the clouds is influenced by the direction and strength of the local magnetic fields, so the researchers measured polarization to determine magnetic field strength. The fields within each cloud core were compared to the fields in the surrounding, tenuous nebula.

The magnetic fields tended to line up in the same direction, even though the relative size scales (1 light-year-sized cores versus 1000 light-year-sized nebulas) and densities were different by orders of magnitude. Since turbulence would tend to churn the nebula and mix up magnetic field directions, their findings show that magnetic fields dominate turbulence in influencing star birth.

“Our result shows that molecular cloud cores located near each other are connected not only by gravity but also by magnetic fields,” said Li. “This shows that computer simulations modeling star formation must take strong magnetic fields into account.”

In the broader picture, this discovery aids understanding of how stars and planets form and, therefore, how the universe has come to look the way it is today.

Source: Harvard-Smithsonian Center for Astrophysics

Brian Ventrudo

Brian Ventrudo is a writer, longtime amateur astronomer, and former optoelectronics scientist who enjoys gazing at stars more than looking into a laser beam. Brian also writes for One-Minute Astronomer, a site that helps backyard stargazers better enjoy their time under the stars.

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

58 minutes ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

3 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

15 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

16 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

17 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

20 hours ago