[/caption]
The Cassini spacecraft has been in orbit around Saturn since 2004 and during its mission, has watched nine different lightning storms rage on the planet. But this latest one is the longest lasting and most powerful storm yet: it has been going on since mid-January 2009 with no end in sight. It broke the storm duration record of 7.5 months set by another thunderstorm observed by Cassin between November 2007 and July 2008. Lightning discharges in Saturn’s atmosphere emit very powerful radio waves which are about 10,000 times stronger than their terrestrial counterparts and the huge thunderstorms in Saturn’s atmosphere have diameters of about 3,000 km.
The storm is coursing through “Storm Alley,” a region which lies 35 degrees south of Saturn’s equator where these mammoth storms occur. On board Cassini measuring these storms are the antennas and receivers of the Cassini Radio and Plasma Wave Science (RPWS) instrument.
“These lightning storms are not only astonishing for their power and longevity,” Dr. Georg Fischer of the Austrian Academy of Sciences, “the radio waves that they emit are also useful for studying Saturn’s ionosphere, the charged layer that surrounds the planet a few thousand kilometers above the cloud tops. The radio waves have to cross the ionosphere to get to Cassini and thereby act as a natural tool to probe the structure of the layer and the levels of ionization in different regions.”
The observations of Saturn lightning using the Cassini RPWS instrument are being carried out by an international team of scientists from Austria, the US and France. Results have confirmed previous studies of the Voyager spacecraft indicating that levels of ionization are approximately 100 times higher on the day-side than the night side of Saturn’s ionosphere.
“The reason why we see lightning in this peculiar location is not completely clear,” said Fischer. “It could be that this latitude is one of the few places in Saturn’s atmosphere that allow large-scale vertical convection of water clouds, which is necessary for thunderstorms to develop. However, it may be a seasonal effect. Voyager observed lightning storms near the equator, so now that Saturn has passed its equinox on 11 August, we may see the storms move back to equatorial latitudes.”
Saturn’s role as the source of lightning was given added confirmation during Cassini’s last close flyby of Titan on August 25. During the half hour that Cassini’s view of Saturn was obscured by Titan, no lightning was observed. “Although we know from Cassini images where Saturn lightning comes from, this unique event was another nice proof for their origin.” said Fischer.
Fischer presented his findings at the European Planetary Science Congress in Potsdam, Germany.
Source: Europlanet
How do you weigh one of the largest objects in the entire universe? Very carefully,…
Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…
Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…
Some binary stars are unusual. They contain a main sequence star like our Sun, while…
11 million years ago, Mars was a frigid, dry, dead world, just like it is…
Uranus is an oddball among the Solar System's planets. While most planets' axis of rotation…