[/caption]
When the media talks about the “god particle”, they’re really talking about a theoretical particle in physics known as the higgs boson. If reality matches the predictions made by theoretical physics, the higgs boson is the particle that gives objects mass. It explains why objects at rest tend to stay at rest and objects in motion tend to stay in motion.
One of the primary goals of the Large Hadron Collider in Switzerland is to search for the so called “god particle”. When it finally gets running, the Large Hadron Collider, or LHC, will run beams of protons around a 27 kilometer circle, slamming them together at close to the speed of light. All the kinetic energy of the protons is instantly frozen out as mass in a shower of particles. Remember Einstein’s famous E=mc2 formula? Well, you can reconfigure the equation to be m = E/c2.
The higgs boson is thought to be a very heavy particle, and so it takes a lot of energy in the collider to create particles this massive. When the LHC starts running, it will collide protons at higher and higher energies, searching for the higgs boson. If it is found, it will confirm a theorized class of particles predicted by the theory of supersymmetry. And even if the higgs boson isn’t found, it will help disprove the theory. Either way, physicists win.
The term “god particle” was coined by physicist Leon Lederman, the 1988 Nobel prize winner in physics and the director of Fermilab. He even wrote a book called the “God Particle”, where he defended the use of the term.
We have written many articles about the Higgs Boson and the Large Hadron Collider here on Universe Today. Here’s an article about how the LHC won’t create a black hole and destroy the Earth. And here’s more on Fermilab’s search for the Higgs Boson.
We have also recorded an episode of Astronomy Cast all about the higgs boson. Listen to it here, Episode 69: The Large Hadron Collider and the Search for the Higgs Boson.
NASA's TESS mission has turned up thousands of exoplanet candidates in almost as many different…
Many people think of the James Webb Space Telescope as a sort of Hubble 2.…
On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…
Black holes are incredible powerhouses, but they might generate even more energy thanks to an…
According to the United Nations, the world produces about 430 million metric tons (267 U.S.…
As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…