Categories: Astronomy

Hawking Radiation

[/caption]
When humans starve, they grow thin and eventually die; when a black hole starves, it too grows thin and dies … but it does so very spectacularly, in a burst of Hawking radiation.

At least that’s the way we understand it today (no black-hole-pining-away has yet been observed), and the theory may be wrong too.

Cosmologist, astrophysicist, and physicist Stephen Hawking showed, in 1974, that black holes should emit electromagnetic radiation with a black body spectrum; this process is also called black hole evaporation. In brief, this theoretical process works like this: particle-antiparticle pairs are constantly being produced and rapidly disappear (through annihilation); these pairs are virtual pairs, and their existence (if something virtual can be said to exist!) is a certain consequence of the Uncertainty Principle. Normally, we don’t ever see either the particle or antiparticle of these pairs, and only know of their existence through effects like the Casimir effect. However, if one such virtual pair pops into existence near the event horizon of a black hole, one may cross it while the other escapes; and the black hole thus loses mass. A long way away from the event horizon, this looks just like black body radiation.

It turns out that the smaller the mass a black hole has, the faster it will lose mass due to Hawking radiation; right at the end, the black hole disappears in an intense burst of gamma radiation (because the black hole’s temperature rises as it gets smaller). We won’t see any of the black holes in the Milky Way explode any time soon though … not only are they likely still gaining mass (from the cosmic microwave background, at least), but a one sol black hole would take over 10^67 years to evaporate (the universe is only 13 billion years old)!

There are many puzzles concerning black holes and Hawking radiation; for example, black hole evaporation via Hawking radiation seems to mean information is lost forever. The root cause of these puzzles is that quantum mechanics and General Relativity – the two most successful theories in physics, period – are incompatible, and we have no experiments or observations to help us work out how to resolve this incompatibility.

Colorado University’s Andrew Hamilton has a good introduction to this topic, as does Usenet Physics FAQ (often recognized by John Baez’ association with it).

Some Universe Today stories which include Hawking radiation are Synthetic Black Hole Event Horizon Created in UK Laboratory, How to Escape from a Black Hole, and When Black Holes Explode: Measuring the Emission from the Fifth Dimension.

Black Holes Big and Small, and The Large Hadron Collider and the Search for the Higgs-Boson are two Astronomy Casts relevant to Hawking radiation.

Sources:
Colorado University
ThinkQuest
University of California – Riverside

Jean Tate

Hi! When I was only six (or so), I went out one clear but windy night with my uncle and peered through the eyepiece of his home-made 6" Newtonian reflector. The dazzling, shimmering, perfect globe-and-ring of Saturn entranced me, and I was hooked on astronomy, for life. Today I'm a freelance writer, and began writing for Universe Today in late 2009. Like Tammy, I do like my coffee, European strength please. Contact me: JeanTate.UT@gmail.com

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

6 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

7 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago