Moon

Moon Crash Plume Visible to Spacecraft But Not Earth Telescopes

Nine science instruments on board the LCROSS spacecraft captured the entire crash sequence of the Centaur impactor before the spacecraft itself impacted the surface of the moon. But from Earth, any evidence of the plume was hidden by the rim of a giant impact basin, a 3 kilometer-high (2-mile) mountain directly in the way for Earth telescopes trained on the impact site, said Dr. Peter Schultz, co-investigator for LCROSS. Additionally, the crater created by the impact was only about 28 meters across (92 feet) but Schultz said the best resolution Earth telescopes can garner is about 180 meters (200 yards) across.

The science team is analyzing the data returned by LCROSS, and Anthony Colaprete, principal investigator and project scientist, said “We are blown away by the data returned. The team is working hard on the analysis and the data appear to be of very high quality.”

The team hopes to release some of their preliminary findings within the next several weeks, Schultz said at in webcast with students and teachers this week.

During the Oct. 9 crash in to the Moon’s Cabeus crater, the nine LCROSS instruments successfully captured each phase of the impact sequence: the impact flash, the ejecta plume, and the creation of the Centaur crater.

Within the ultraviolet/visible and near infra-red spectrometer and camera data was a faint, but distinct, debris plume created by the Centaur’s impact.

“There is a clear indication of a plume of vapor and fine debris,” said Colaprete. “Within the range of model predictions we made, the ejecta brightness appears to be at the low end of our predictions and this may be a clue to the properties of the material the Centaur impacted.”

The magnitude, form, and visibility of the debris plume add additional information about the concentrations and state of the material at the impact site.

From images and data, the team was able to determine the extent of the plume at 15 seconds after impact was approximately 6-8 km in diameter. Schultz said the Moon’s gravity pulled down most of ejecta within several minutes.

The LCROSS spacecraft also captured the Centaur impact flash in both mid-infrared (MIR) thermal cameras over a couple of seconds. The temperature of the flash provides valuable information about the composition of the material at the impact site. LCROSS also captured emissions and absorption spectra across the flash using an ultraviolet/visible spectrometer. Different materials release or absorb energy at specific wavelengths that are measurable by the spectrometers.

the locations of the Diviner LCROSS impact swaths overlain on a grayscale daytime thermal map of the Moon’s south polar region. Diviner data were used to help select the final LCROSS impact site inside Cabeus Crater, which sampled an extremely cold region in permanent shadow that can serve as an effective cold trap for water ice and other frozen volatiles. Credit NASA/GSFC/UCLA

Additionally, the Lunar Reconnaissance Orbiter’s Diviner instrument also obtained infrared observations of the LCROSS impact. LRO flew by the LCROSS Centaur impact site 90 seconds after impact at a distance of ~80 km. Both science teams are working together to analyze the their data.

The LCROSS spacecraft captured and returned data until virtually the last second before impact, Colaprete said, and the thermal and near-infrared cameras returned excellent images of the Centaur impact crater at a resolution of less than 6.5 feet (2 m).

“The images of the floor of Cabeus are exciting,” said Colaprete. “Being able to image the Centaur crater helps us reconstruct the impact process, which in turn helps us understand the observations of the flash and ejecta plume.”

Sources: LCROSS, LCROSS webcast

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

We Understand Rotating Black Holes Even Less Than We Thought

The theory of black holes has several mathematical oddities. Recent research shows our understanding of…

2 hours ago

Habitable Worlds are Found in Safe Places

When we think of exoplanets that may be able to support life, we hone in…

2 hours ago

New Glenn Booster Moves to Launch Complex 36

Nine years ago, Blue Origin revealed the plans for their New Glenn rocket, a heavy-lift…

2 hours ago

How Many Additional Exoplanets are in Known Systems?

NASA's TESS mission has turned up thousands of exoplanet candidates in almost as many different…

6 hours ago

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

13 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

21 hours ago