Categories: Mercury

Mercury Gives Up More Secrets to MESSENGER

Even though the MESSENGER spacecraft experienced a “hiccup” during its third and final flyby of Mercury on Sept. 29, scientists are still pleased and surprised by the data garnered. The spacecraft went into safe mode, shutting down temporarily because of a power system switchover during a solar eclipse as it approached the planet and only half of the expected observations were carried out. But the new data – combined with observations from the two previous flybys — provide an almost complete view of Mercury’s surface and offer new, unexpected scientific findings. “Although the area viewed for the first time by spacecraft was less than 350 miles across at the equator, the new images reminded us that Mercury continues to hold surprises,” said principal investigator Sean Solomon.

The most important aspect of the flyby was a critical gravity assist to remain on course to enter into orbit around Mercury in 2011. Additionally, the spacecraft’s cameras and instruments collected high-resolution and color images unveiling another 6 percent of the planet’s surface never before seen at close range.

Image coverage map of Mercury after the third MESSENGER flyby. Credit: NASA, Applied Physics Lab

Solomon said at today’s press conference that all the data gathered on Mercury so far are like first few chapters of a novel; we’ve learned much, but much more of the story remains. Approximately 98 percent of Mercury’s surface now has been imaged by NASA spacecraft. After MESSENGER goes into orbit around Mercury, it will see the polar regions, which are the only unobserved areas of the planet.

Many new features were revealed during the third flyby, including a region with a bright area surrounding an irregular depression, suspected to be volcanic in origin. Other images revealed a double-ring impact basin approximately 180 miles across. The basin is similar to a feature scientists call the Raditladi basin, which was viewed during the probe’s first flyby of Mercury in January 2008.

This spectacular 290-km-diameter double-ring basin seen in detail for the first time during MESSENGER’s third flyby of Mercury bears a striking resemblance to the Raditladi basin, observed during the first flyby.

“This double-ring basin, seen in detail for the first time, is remarkably well preserved,” said Brett Denevi, a member of the probe’s imaging team and a postdoctoral researcher at Arizona State University in Tempe. “One similarity to Raditladi is its age, which has been estimated to be approximately one billion years old. Such an age is quite young for an impact basin, because most basins are about four times older. The inner floor of this basin is even younger than the basin itself and differs in color from its surroundings. We may have found the youngest volcanic material on Mercury.”

One of the spacecraft’s instruments conducted its most extensive observations to date of Mercury’s exosphere, or thin atmosphere, during this encounter. The flyby allowed for the first detailed scans over Mercury’s north and south poles. The probe also has begun to reveal how Mercury’s atmosphere varies with its distance from the sun.

Comparison of neutral sodium observed during MESSENGER’s second and third Mercury flybys

“A striking illustration of what we call ‘seasonal’ effects in Mercury’s exosphere is that the neutral sodium tail, so prominent in the first two flybys, is 10 to 20 times less intense in emission and significantly reduced in extent,” says participating scientist Ron Vervack, of the Johns Hopkins University Applied Physics Laboratory, or APL, in Laurel, Md. “This difference is related to expected variations in solar radiation pressure as Mercury moves in its orbit and demonstrates why Mercury’s exosphere is one of the most dynamic in the solar system.”

The observations also show that calcium and magnesium exhibit different seasonal changes than sodium. Studying the seasonal changes in all exospheric constituents during the mission orbital phase will provide key information on the relative importance of the processes that generate, sustain, and modify Mercury’s atmosphere.

Schematic view of Mercury’s interior showing its large, iron-rich core, which constitutes at least ~60% of the planet’s mass.

The third flyby also revealed new information on the abundances of iron and titanium in Mercury’s surface materials. Earlier Earth and spacecraft-based observations showed that Mercury’s surface has a very low concentration of iron in silicate minerals, a result that led to the view that the planet’s crust is generally low in iron.

“Now we know Mercury’s surface has an average iron and titanium abundance that is higher than most of us expected, similar to some lunar mare basalts,” says David Lawrence, an APL participating mission scientist.

The spacecraft has completed nearly three-quarters of its 4.9-billion-mile journey to enter orbit around Mercury. The full trip will include more than 15 trips around the sun. In addition to flying by Mercury, the spacecraft flew past Earth in August 2005 and Venus in October 2006 and June 2007.

Source: NASA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

3 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

11 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

16 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

1 day ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

2 days ago