Categories: Solar Astronomy

Up, Up and Away! Helium Balloon Telescope Explores the Sun


Exploring the Sun via helium balloon almost sounds like an adventure for an animated movie, but the SUNRISE balloon-borne telescope has captured data and images that show the complex interplay on the solar surface to a level of detail never before achieved. As in the video above, SUNRISE shows our local star to be a bubbling, boiling mass where packages of gas rise and sink, lending the sun its grainy surface structure. Dark spots appear and disappear, clouds of matter dart up – and behind the whole thing are the magnetic fields, the engines of it all.

[/caption]
“Thanks to its excellent optical quality, the SUFI instrument was able to depict the very small magnetic structures with high intensity contrast, while the IMaX instrument simultaneously recorded the magnetic field and the flow velocity of the hot gas in these structures and their environment,” said Dr. Achim Gandorfer, project scientist for SUNRISE at the Max Planck Institute for Solar System Research.

Previously, the observed physical processes could only be simulated with complex computer models.
“Thanks to SUNRISE, these models can now be placed on a solid experimental basis,” said Manfred Schüssler, co-founder of the mission.

SUNRISE is the largest solar telescope ever to have left Earth. It was launched from the ESRANGE Space Centre in Kiruna, northern Sweden, on June 8, 2009. The total equipment weighed in at more than six tons on launch. Carried by a gigantic helium balloon with a capacity of a million cubic meters and a diameter of around 130 meters, SUNRISE reached a cruising altitude of 37 kilometers above the Earth’s surface.

In the stratosphere, observational conditions are similar to those in outer space. The images are no longer affected by air turbulence, and the camera can also zoom in on the Sun in ultraviolet light, which would otherwise be absorbed by the ozone layer. After making its observations, SUNRISE separated from the balloon, and parachuted safely down to Earth on June 14th, landing on Somerset Island, a large island in Canada’s Nunavut Territory.

Grainy sun: the images show the so-called granulation in four different wavelengths in near ultraviolet light. The image section depicts 1/20,000 of the entire surface. The smallest recognisable structures have an angular resolution equal to that of looking at a coin from a distance of 100 kilometres. The light structures are the foundational elements of the magnetic fields. Credit: Image: MPI for Solar System Research

The work of analyzing the total of 1.8 terabytes of observation data recorded by the telescope during its five-day flight has only just begun. Yet the first findings already give a promising indication that the mission will bring our understanding of the Sun and its activity a great leap forward. What is particularly interesting is the connection between the strength of the magnetic field and the brightness of tiny magnetic structures. Since the magnetic field varies in an eleven-year cycle of activity, the increased presence of these foundational elements brings a rise in overall solar brightness – resulting in greater heat input to the Earth.

The variations in solar radiation are particularly pronounced in ultraviolet light. This light does not reach the surface of the Earth; the ozone layer absorbs and is warmed by it. During its flight through the stratosphere, SUNRISE carried out the first ever study of the bright magnetic structures on the solar surface in this important spectral range with a wavelength of between 200 and 400 nanometers (millionths of a millimeter).

SUNRISE is a collaborative project between the Max Planck Institute for Solar System Research in Katlenburg-Lindau, with partners in Germany, Spain and the USA.

Source: PhysOrg

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Hubble and Webb are the Dream Team. Don't Break Them Up

Many people think of the James Webb Space Telescope as a sort of Hubble 2.…

7 hours ago

Scientists Have Figured out why Martian Soil is so Crusty

On November 26th, 2018, NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight)…

15 hours ago

Another Way to Extract Energy From Black Holes?

Black holes are incredible powerhouses, but they might generate even more energy thanks to an…

20 hours ago

Plastic Waste on our Beaches Now Visible from Space, Says New Study

According to the United Nations, the world produces about 430 million metric tons (267 U.S.…

2 days ago

Future Space Telescopes Could be Made From Thin Membranes, Unrolled in Space to Enormous Size

As we saw with JWST, it's difficult and expensive to launch large telescope apertures, relying…

2 days ago

Voyager 1 is Forced to Rely on its Low Power Radio

Voyager 1 was launched waaaaaay back in 1977. I would have been 4 years old…

3 days ago