ALMA Telescope Links Third Antenna

Well, they’re 1/22 of the way there: the Atacama Large Millimeter/submillimeter Array (ALMA), planned to be one of the largest ground-based observatories in the world, successfully linked 3 of its 66 antennas together. This is the next step in working out all of the bugs associated with linking together the whole array, which should happen sometime in 2012.

ALMA is a “microwave” telescope array that will be the largest such ground-based observatory in the world once it is completely online. Telescopes like ALMA are called interferometers because they use the principle of very-long baseline interferometry – by linking separate telescopes together, a larger telescope of the effective resolution of the distance between the separate elements is achieved.

We reported on the first image taken by two of the antennas back in November. Information from a pair of the antennas was gathered to test the electronic functioning of the system, but errors from the system itself and those that creep in because of the atmosphere were weeded out by this latest test that included a third antenna. This test is called a “closure phase”, essentially the self-calibration of the antennas in terms of reconciling the information they are taking in with the signals present from noise.

Fred Lo, director of the National Radio Astronomy Observatory (NRAO) – which is the contributing organization of North America to the ALMA array – said of the test in a press release,”This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes.”

ALMA can gather information in the electromagnetic spectrum at a wavelength that is less than 1 millimeter. Because the planned array is so large, it will eventually be able to resolve unprecedented images of some of the first galaxies to form after the Big Bang, and will also be able to capture the formation of planets around stars, as well as information on the late stages in the life of stars.

ALMA is located in the Atacama desert in Chile at about 5,000 meters (16,500 feet) above sea level. This high and dry location allows the telescope to receive more of the light in the submillimeter; water vapor in the atmosphere of the Earth absorbs light in this part of the spectrum.

Source: NRAO press release

Nicholos Wethington

I started writing for Universe Today in September 2007, and have loved every second of it since! Astronomy and science are fascinating for me to learn and write about, and it makes me happy to share my passion for science with others. In addition to the science writing, I'm a full-time bicycle mechanic and the two balance nicely, as I get to work with my hands for part of the day, and my head the other part (some of the topics are a stretch for me to wrap my head around, too!).

Recent Posts

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

11 minutes ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

5 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

7 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

19 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

20 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

21 hours ago