Categories: Extrasolar Planets

First Direct Spectrum of an Exoplanet Orbiting a Sun-like Star

[/caption]

Astronomers have obtained the first direct spectrum – a “chemical fingerprint” – of a planet orbiting a distant, Sun-like star, providing direct data about the composition of the planet’s atmosphere. An international team of researchers studied the planetary system around HR 8799 a bright, young star with 1.5 times the mass of our Sun, and focused on one of three planets orbiting the star. While the results were unusual and pose a challenge to current models of the exoplanet’s atmosphere, the accomplishment represents a milestone in the search for life elsewhere in the Universe.

The planetary system resembles a scaled-up version of our own Solar System and includes three giant planets, which had been detected in 2008 in another study. “Our target was the middle planet of the three,” said team member and PhD student Carolina Bergfors, from the Max Planck Institute for Astronomy, (MPIA), “which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius,”

The NaCo instrument, mounted at ESO's Very Large Telescope on Paranal in Chile. Credit: ESO


Caption: The NaCo instrument, mounted at ESO’s Very Large Telescope on Paranal in Chile. NaCo is a combination of adaptive optics (which counteracts some of the blurring effect of the Earth’s atmosphere) and the camera/spectrograph CONICA, which was developed at the Max Planck Institute for Astronomy and the Max Planck Institute for Extraterrestrial Physics. Image credit: ESO

The researchers recorded the spectrum using the NACO instrument ion the Very Large Telescope (VLT) in Chile.

As the host star is several thousand times brighter than the planet, and the two are very close, obtaining such a spectrum is an immense feat.

“It’s like trying to see what a candle is made of, by observing it next to a blinding 300 Watt lamp – from a distance of 2 kilometres [1.3 miles],” said Markus Janson of the University of Toronto, lead author of the paper.

Bergfors added, “It took more than five hours of exposure time, but we were able to tease out the planet’s spectrum from the host star’s much brighter light.”

However, the spectra of the exoplanet’s atmosphere shows a clear deviation between the observed spectral shape and what is predicted by the current standard models. “The features observed in the spectrum are not compatible with current theoretical models,” said MPIA’s Wolfgang Brandner, a co-author of the study.

The models assume chemical equilibrium between the different chemical elements present in the atmosphere, and a continuous temperature profile (hotter layers below colder layers). At longer wavelengths (above 4 micrometres), the planet is significantly fainter than expected, which points to molecular absorption spectrum in its atmosphere. The simplest explanation is that the atmosphere contains less methane and more carbon monoxide than previously assumed.

“We need to take into account a more detailed description of the atmospheric dust clouds, or accept that the atmosphere has a different chemical composition than previously assumed,” Brandner said.

In time, the astronomers hope that this technique will help them gain a better understanding of how planets form. Next, they hope to record the spectra of the two other giant planets orbiting HR 8799 – which would represent the first time that astronomers would be able to compare the spectra of three exoplanets that form part of one and the same system. As a much more distant goal, the technique will allow astronomers to examine exoplanets for habitability, or even signs of life.

Source: Max Planck Institute for Astronomy

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

9 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

10 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago