Categories: Extrasolar Planets

First Direct Spectrum of an Exoplanet Orbiting a Sun-like Star

[/caption]

Astronomers have obtained the first direct spectrum – a “chemical fingerprint” – of a planet orbiting a distant, Sun-like star, providing direct data about the composition of the planet’s atmosphere. An international team of researchers studied the planetary system around HR 8799 a bright, young star with 1.5 times the mass of our Sun, and focused on one of three planets orbiting the star. While the results were unusual and pose a challenge to current models of the exoplanet’s atmosphere, the accomplishment represents a milestone in the search for life elsewhere in the Universe.

The planetary system resembles a scaled-up version of our own Solar System and includes three giant planets, which had been detected in 2008 in another study. “Our target was the middle planet of the three,” said team member and PhD student Carolina Bergfors, from the Max Planck Institute for Astronomy, (MPIA), “which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius,”

The NaCo instrument, mounted at ESO's Very Large Telescope on Paranal in Chile. Credit: ESO


Caption: The NaCo instrument, mounted at ESO’s Very Large Telescope on Paranal in Chile. NaCo is a combination of adaptive optics (which counteracts some of the blurring effect of the Earth’s atmosphere) and the camera/spectrograph CONICA, which was developed at the Max Planck Institute for Astronomy and the Max Planck Institute for Extraterrestrial Physics. Image credit: ESO

The researchers recorded the spectrum using the NACO instrument ion the Very Large Telescope (VLT) in Chile.

As the host star is several thousand times brighter than the planet, and the two are very close, obtaining such a spectrum is an immense feat.

“It’s like trying to see what a candle is made of, by observing it next to a blinding 300 Watt lamp – from a distance of 2 kilometres [1.3 miles],” said Markus Janson of the University of Toronto, lead author of the paper.

Bergfors added, “It took more than five hours of exposure time, but we were able to tease out the planet’s spectrum from the host star’s much brighter light.”

However, the spectra of the exoplanet’s atmosphere shows a clear deviation between the observed spectral shape and what is predicted by the current standard models. “The features observed in the spectrum are not compatible with current theoretical models,” said MPIA’s Wolfgang Brandner, a co-author of the study.

The models assume chemical equilibrium between the different chemical elements present in the atmosphere, and a continuous temperature profile (hotter layers below colder layers). At longer wavelengths (above 4 micrometres), the planet is significantly fainter than expected, which points to molecular absorption spectrum in its atmosphere. The simplest explanation is that the atmosphere contains less methane and more carbon monoxide than previously assumed.

“We need to take into account a more detailed description of the atmospheric dust clouds, or accept that the atmosphere has a different chemical composition than previously assumed,” Brandner said.

In time, the astronomers hope that this technique will help them gain a better understanding of how planets form. Next, they hope to record the spectra of the two other giant planets orbiting HR 8799 – which would represent the first time that astronomers would be able to compare the spectra of three exoplanets that form part of one and the same system. As a much more distant goal, the technique will allow astronomers to examine exoplanets for habitability, or even signs of life.

Source: Max Planck Institute for Astronomy

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

This is What it Sounds Like When the Earth’s Poles Flip

Is there something strange and alien confined deep inside the Earth? Is it trying to…

5 hours ago

Orbital Debris is Getting Out of Control

In 1978, NASA scientists Donald J. Kessler and Burton G. Cour-Palais proposed a scenario where…

6 hours ago

Webb Reveals a Steam World Planet Orbiting a Red Dwarf

The JWST has found an exoplanet unlike any other. This unique world has an atmosphere…

8 hours ago

NASA Wants to Move Heavy Cargo on the Moon

While new rockets and human missions to the Moon are in the press, NASA is…

9 hours ago

Learning More About Supernovae Through Stardust

Dust grains older than the Sun can tell us about how supernovae enriched the cosmos…

10 hours ago

Astronomers Predict the Orbits of Potentially Hazardous Comets From Meteor Showers

Long-period comets can have orbits that can take hundreds of years before they return to…

12 hours ago