[/caption]
Imagine taking a beam of light and tying it in knots like a piece of string. Hard to fathom? Well, a group of physicists from the UK have achieved this remarkable feat, and they say understanding how to control light in this way has important implications for laser technology used in wide a range of industries.
“In a light beam, the flow of light through space is similar to water flowing in a river,” said Dr. Mark Dennis from the University of Bristol and lead author of a paper published in Nature Physics this week. “Although it often flows in a straight line – out of a torch, laser pointer, etc – light can also flow in whirls and eddies, forming lines in space called ‘optical vortices.’ Along these lines, or optical vortices, the intensity of the light is zero (black). The light all around us is filled with these dark lines, even though we can’t see them.”
Optical vortices can be created with holograms which direct the flow of light. In this work, the team designed holograms using knot theory – a branch of abstract mathematics inspired by knots that occur in shoelaces and rope. Using these specially designed holograms they were able to create knots in optical vortices.
This new research demonstrates a physical application for a branch of mathematics previously considered completely abstract.
“The sophisticated hologram design required for the experimental demonstration of the knotted light shows advanced optical control, which undoubtedly can be used in future laser devices,” said Miles Padgett from Glasgow University, who led the experiments
“The study of knotted vortices was initiated by Lord Kelvin back in 1867 in his quest for an explanation of atoms,” addeds Dennis, who began to study knotted optical vortices with Professor Sir Michael Berry at Bristol University in 2000. “This work opens a new chapter in that history.”
Paper: Isolated optical vortex knots by Mark R. Dennis, Robert P. King, Barry Jack, Kevin O’Holleran and Miles J. Padgett. Nature Physics, published online 17 January 2010.
Source: University of Bristol
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…