Categories: Astronomy

Atomic Mass Unit

[/caption]
Believe it or not, there are actually several atomic mass units … however, the one that’s standard – throughout chemistry, physics, biology, etc – is the unified atomic mass unit (symbol u). It is defined as 1/12 (one-twelfth) of the mass of an isolated carbon-12 atom, in its ground state, at rest. You’ll still sometime see the symbol amu – which stands for atomic mass unit – but that’s actually two, slightly different, units (and each is different from the unified atomic mass unit!) … these older units are defined in terms of oxygen (1/16th of an isolated oxygen-16 atom, and 1/16th of an ‘average’ oxygen atom).

As it’s a unit of mass, the atomic mass unit (u) should also have a value, in kilograms, right? It does … 1.660 538 782(83) x 10-27 kg. How was this conversion worked out? After all, the kilogram is defined in terms of a bar of platinum-iridium alloy, sitting in a vault in Paris! First, it is important to recognize that the unified atomic mass unit is not an SI unit, but one that is accepted for use with the SI. Second, the kilogram and unified atomic mass unit are related via a primary SI unit, the mole, which is defined as “the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12“. Do you remember how many atoms there are in a mole of an element? Avogadro’s number! So, work out the Avogadro constant, and the conversion factor follows by a simple calculation …

The Dalton (symbol D, or Da) is the same as the unified atomic mass unit … why have two units then?!? In microbiology and biochemistry, many molecules have hundreds, or thousands, of constituent atoms, so it’s convenient to state their masses in terms of ‘thousands of unified atomic mass units’. That’s far too big a mouthful, so convention is to use kDa (kilodaltons).

Find out more on the (unified) atomic mass unit, from the Argonne National Laboratory, from the International Union of Pure and Applied Chemistry, and from the National Institute of Standards and Technology (NIST).

Learning to Breathe Mars Air and Mini-Detector Could Find Life on Mars or Anthrax at the Airport are two Universe Today articles relevant to the atomic mass unit.

Energy Levels and Spectra and Inside the Atom are two Astronomy Cast episodes related to the atomic mass unit.

Sources:
Wikipedia
Newton Ask a Scientist
Wise Geek

Jean Tate

Hi! When I was only six (or so), I went out one clear but windy night with my uncle and peered through the eyepiece of his home-made 6" Newtonian reflector. The dazzling, shimmering, perfect globe-and-ring of Saturn entranced me, and I was hooked on astronomy, for life. Today I'm a freelance writer, and began writing for Universe Today in late 2009. Like Tammy, I do like my coffee, European strength please. Contact me: JeanTate.UT@gmail.com

Recent Posts

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

5 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

7 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

19 hours ago

There Was a 15 Minute Warning Before Tonga Volcano Exploded

Volcanoes are not restricted to the land, there are many undersea versions. One such undersea…

20 hours ago

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

Some binary stars are unusual. They contain a main sequence star like our Sun, while…

21 hours ago

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is…

23 hours ago