Greetings, fellow SkyWatchers! If you’re not about to get buried under a blanket of snow, then why not spend some time out under blanket of stars with this weekend’s stellar project? This four star adventure is sure to warm you up. Need more? Then I’ll show you were to look for a comet and a “snow ball” of stars! Of course, we’ve got plenty to learn about the history and mystery of what we’re looking at, so whenever you’re ready? I’ll see you in the backyard…
Friday, February 5, 2010 – On this date in 1963, Maarten Schmidt measured the first quasar redshift, and in 1974, Mariner 10 took the first close-up images of Venus. This date in 1971 was also important for two men named Shepard and Mitchell, whose Apollo 14 module had just touched down in the Fra Mauro highlands. At 14:54 UTC, Alan Shepard stepped onto the surface and said, ‘‘It’s been a long way, but we’re here.’’
If you think these two Apollo astronauts traveled a long way, then let’s take a look at some stars that have been at if for a couple of million years! Near the heart of the Orion Nebula, two massive binary stars were involved in a head-on collision, exchanging stars. Iota Orionis became a new binary system, but two ‘‘runaways’’ left the scene of the accident at a speed of 200 kilometers per second. Tonight we’ll look at these two challenging stars – one to the north and one to the south.
North is AE Aurigae (RA 05 16 18 Dec +34 18 44). Its two-letter designation shows AE is a variable star, and it flirts with unaided visibility between magnitudes 5 and 6. On a dark night, you can usually spot AE hanging out on the northwestern perimeter of a spangle of stars about two finger-widths east of Iota Aurigae. With a distance of 1,450 light-years, it’s not surprising that its faint, but AE would be a full magnitude brighter if it wasn’t in a dust cloud! AE Aurigae is a hot star, and its simple spectrum and rapid movement against the interstellar medium make it ideal for studying these primal gases. Examined with a telescope at low magnification, you can enjoy the illumination created by the ‘‘Flaming Star’’!
Tonight, our traveling project concludes at the tip of Orion’s sword – Iota Orionis – the third player in our ‘‘runaway’’ drama (RA 05 35 25 Dec -05 54 35).
Hatsya (Bright One of the Sword) is a spectroscopic binary resulting from the collision we studied yesterday. Iota consists of two powerful, white hot suns, orbiting less than one Astronomical Unit (AU) apart and nearly touching at one point during their monthly orbit – a powerful X-ray source! In binoculars, Hatsya appears in a charming collection of stars, while small telescopes reveal a colorful red/blue triple system. Surrounding Iota is a faint stardust nebula, NGC 1980, often mistaken as part of M42.
Now hop down to Lepus for a faint, round, fuzzy object that’s achievable in a small telescope or binoculars – Messier Object 79 (RA 05 24 10 Dec +24 31 27).
Huggins was also the first amateur to measure the radial velocities of stars from their spectral shifts. Although most people assume only professional scientists can make such measurements, many of today’s amateurs (unpaid, but not unskilled!) have measured spectra. Tonight let’s look at a star whose radial velocity has been studied both professionally and personally – Kappa Orionis (RA 05 47 45 Dec -09 40 10).
Until next week? Dodge the snow flakes and dance in the starlight!
This week’s awesome image are (in order of appearance): AE Aurigae and Mu Columbae – Palomar Observatory, courtesy of Caltech, Comet Tritton rough finder chart courtesy of Heavens Above, Salyut 7 as seen from orbiting Soyuz courtesy of NASA, Iota Orionis and Messier 79 – Palomar Observatory courtesy of Caltech, William Huggins historical image and Kappa Orionis – Palomar Observatory, courtesy of Caletch. We thank you so much!
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…