Categories: Astronomy

Local Interstellar Gas Mapped in 3-D

[/caption]
Astronomers have created a new 3D map of the interstellar gas in the local area around our Sun. “Local” is a relative term, as the map extends to an area of 300 parsecs and provides new absorption measurements towards more than 1800 stars. The group of astronomers, from the US and France, were able to characterize the properties of the interstellar gas within each sight line. The new map will allow astronomers to better understand the interplay between the evolution of stars and their exchange of matter with the ambient interstellar medium.

The local area around our Sun has been studied with many surveys at various wavelengths, but the whole picture is still far from being either complete or fully understood. Our sun resides in a “cavity” a region of very low-density neutral gas, known as the Local Cavity. Theories of the general interstellar medium require that these large rarefied cavities exist, and astronomers believe the cavities were formed by the combined action of energetic supernova events and the outflowing winds of clusters of hot and young stars. The history of our Local Cavity is still speculative, but astronomers think it was created about 15 million years ago by a series of supernova outbursts, with the last re-heating happening about 3 million years ago.

The team gathered their data primarily from the European Southern Observatory in Chile, and combined it with previously published results. The map (shown above) shows the sodium map of the interstellar gas density within 300 parsecs. The white area surrounding the Sun (at the center of the map) corresponds to the Local Cavity. It is about 80 parsecs in radius in most directions and is surrounded by a highly fragmented “wall” of dense neutral gas. The various gaps in the wall are “interstellar tunnels” and represent rarefied pathways into other surrounding interstellar cavities. Maps of the distribution of calcium have never been made before, and they reveal that the Local Cavity contains numerous filamentary structures of partially ionized gas that appear to form in a honeycomb-like pattern of small interstellar cells.

Source: Astronomy and Astrophysics

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

New Research Suggests Io Doesn’t Have a Shallow Ocean of Magma

Jupiter's moon Io is the most volcanically active body in the Solar System, with roughly…

13 hours ago

The Mysterious Case of the Resurrected Star

The star HD 65907 is not what it appears to be. It’s a star that…

13 hours ago

The JWST Looked Over the Hubble’s Shoulder and Confirmed that the Universe is Expanding Faster

It's axiomatic that the Universe is expanding. However, the rate of expansion hasn't remained the…

18 hours ago

Astronaut Don Pettit is Serious, He Rigged up Astrophotography Gear on the ISS

Don Pettit is one of the astronauts currently on board the International Space Station. He's…

22 hours ago

Drone Test Flights Are Being Tested for Flights on Alien Worlds

We’ve already seen the success of the Ingenuity probe on Mars. The first aircraft to…

23 hours ago

One of the Most Interesting Exoplanets Just Got Even More Interesting!

Since the discovery of the first exoplanet in 1992, thousands more have been discovered. 40…

1 day ago