Categories: Astronomy

Birth of Stars Seen by AKARI

The Japanese AKARI spacecraft – formerly known as Astro-F – captured this photograph of the reflection nebula IC 1396. This nebula is a bright star-forming region located about 3,000 light years from Earth in the constellation Cepheus, and it contains several young stars dozens of times more massive than our Sun. AKARI was able to reveal many new stars that were previously invisible because of its ability to see in the far infrared spectrum.

AKARI, the Japan Aerospace Exploration Agency (JAXA) infrared astronomical satellite with ESA participation, is continuing its survey of the sky and its mapping of our cosmos in infrared light. New exciting images recently taken by AKARI depict scenes from the birth and death of stars.

AKARI’s Infrared Camera (IRC) imaged the reflection nebula IC 1396 in the constellation Cepheus (a reflection nebula is a cloud of dust which reflects the light of nearby stars). IC 1396 is a bright star-forming region located about 3000 light years from our Solar System, in a region where very massive stars – several tens of times as massive as our Sun – are presently being born. The birth of stars in the central region of the image have swept out the gas and dust to the periphery of the nebula, creating a hollow shell-like structure.

A new generation of stars is now taking place within the compressed gas in these outer shell structures. With this high-resolution and high-quality image of IC 1396, AKARI has revealed for the first time the detailed distribution of the gas and dust swept out over the entire nebula.

A comparison between a visible image of IC 1396 and AKARI’s view of the same area shows that stars being born in regions that appear dark in visible light (left), do however appear bright if observed in infrared light (right).

The gas that has been swept out creates the bright filament-like structures seen in infrared in the surrounding regions. The dust in the gas is heated by the intense light coming from both the massive star at the centre of the nebula and the newly born stars in the dense gas itself, and emits infrared light.

The bright clump seen on the slightly off-centre right-hand side is known as the ‘Elephant Trunk Nebula’, a star forming region too. It appears as a dark nebula in the visible light (left image), but it is very bright in the infrared. It is a clump of dense gas that was not originally blown away because of its very high density.

Many recently born stars that were previously unknown are now expected to be detected thanks to AKARI’s new image, while the detailed analysis of these data will reveal the story of the star formation in this area.

AKARI’s Far-Infrared Surveyor (FIS) instrument imaged the red giant ‘U Hydrae’, a star located at about 500 light years from our Sun. AKARI’s observations have revealed very extended clouds of dust surrounding this object.

Stars with masses close to that of our Sun will expand during the later stages of their life becoming so-called ‘red-giant’ stars. During the final phase of their life such stars often eject gas from their surface into interstellar space – dust is formed in the ejected gas, and this mixture of gas and dust expands and escapes from the star.

AKARI’s superior quality and high-resolution imaging allowed the clear detection of a shell-like dust cloud surrounding U Hydrae at a distance of about 0.3 light years from the central star, implying that a short and violent ejection of mass took place in the star about 10 000 years ago.

AKARI (formerly known as ASTRO-F) was launched on 21 February 2006 (UT) from the Uchinoura Space Centre, Japan, and started its complete sky survey in April 2006.

Original Source: ESA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Scientists Develop Technique to Create 3D Models of Cosmic Structures

For decades, astronomers have used powerful instruments to capture images of the cosmos in various…

1 hour ago

The Best Way to Find Planet Nine Might Be Hundreds of Tiny Telescopes

Although the outer Solar System is mostly empty, there are icy objects drifting within the…

2 hours ago

It Takes Very Special Conditions to Create This Bizarre Stellar Spectacle

A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…

2 hours ago

A New Look a the Most Ancient Light in the Universe

About 370,000 years after the Big Bang, the Universe had cooled down so light could…

4 hours ago

Space Tourism: The Good, The Bad, The Meh

Space tourism here is here to stay, and will likely remain a permanent fixture of…

9 hours ago

New Study Examines Cosmic Expansion, Leading to a New Drake Equation

In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…

1 day ago