Categories: NASA

Improving the Conversation: NASA Begins Upgrade to Deep Space Network

[/caption]

All the robotic missions to various points in our solar system wouldn’t be possible if not for the Deep Space Network. It’s not just sending commands and receiving data, but also orbit determination, or keeping track of where the spacecraft are with radiometric tracking data so that spacecraft navigators can get probes exactly where the scientists want them to go. The three 70-meter antennas, located at the DSN complexes at Goldstone, California, Madrid, Spain, and Canberra, Australia are more than 40 years old and show wear and tear from constant use, while new and improved technology and antennas now available would improve operations. NASA announced this week they will begin to replace its aging fleet of dishes with a new generation of 34-meter (112-foot) antennas by 2025.

NASA broke ground this week by beginning to work on the facilities near Canberra, Australia. NASA expects to complete the building of up to three 34-meter antennas by 2018. The decision to begin construction came on the 50th anniversary of U.S. and Australian cooperation in space tracking operations.

“There is no better way to celebrate our 50 years of collaboration and partnership in exploring the heavens with the government of Australia than our renewed commitment and investment in new capabilities required for the next five decades,” said Badri Younes, deputy associate administrator for Space Communications and Navigation at NASA Headquarters in Washington.

The new antennas, known as “beam wave guide” antennas, can be used more flexibly, allowing the network to operate on several different frequency bands within the same antenna. Their electronic equipment is more accessible, making maintenance easier and less costly. The new antennas also can receive higher-frequency, wider-bandwidth signals known as the “Ka band.” This band, required for new NASA missions approved after 2009, allows the newer antennas to carry more data than the older ones.

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

New Research Indicates the Sun may be More Prone to Flares Than we Thought

This past year saw some significant solar activity. This was especially true during the month…

9 hours ago

NASA’s Perseverance Rover Reaches the Top Rim of the Jezero Crater

In 2018, NASA mission planners selected the Jezero Crater as the future landing site of…

1 day ago

Antimatter Propulsion Is Still Far Away, But It Could Change Everything

Getting places in space quickly has been the goal of propulsion research for a long…

2 days ago

Could Planets Orbiting Two Stars Have Moons?

Exomoons are a hot topic in the science community, as none have been confirmed with…

2 days ago

Webb Weighs an Early Twin of the Milky Way

Astronomers have used JWST to weigh a galaxy in the early Universe, finding that it…

3 days ago

Do the Fastest Spinning Pulsars Contain Quark Matter?

When a massive star dies as a supernova, it can leave behind a pulsar, a…

3 days ago