Categories: Jupiter

Red Spot Jr. is Getting Stronger

Jupiter’s newly formed Red Spot Jr. is increasing in strength, according to new observations from the Hubble Space Telescope. These latest measurements clock its windspeeds at 640 kph (400 mph); almost double the speeds recorded by the Voyager spacecraft when it observed one of the spot’s parent storms in 1979. The increased windspeed probably dredged up deeper material from the planet, changing its colour from white to red, similar to the Great Red Spot.

The highest wind speeds in Jupiter’s Little Red Spot have increased and are now equal to those in its older and larger sibling, the Great Red Spot, according to observations with NASA’s Hubble Space Telescope.

The Little Red Spot’s winds, now raging up to approximately 400 miles per hour, signal that the storm is growing stronger, according to the NASA-led team that made the Hubble observations. The increased intensity of the storm probably caused it to change color from its original white in late 2005, according to the team.

“No one has ever seen a storm on Jupiter grow stronger and turn red before,” said Amy Simon-Miller of NASA’s Goddard Space Flight Center, Greenbelt, Md., lead author of a paper describing the new observations appearing in the journal Icarus. “We hope continued observations of the Little Red Spot will shed light on the many mysteries of the Great Red Spot, including the composition of its clouds and the chemistry that gives it its red color.”

Although it seems small when viewed against Jupiter’s vast scale, the Little Red Spot is actually about the size of Earth, and the Great Red Spot is around three Earth diameters across. Both are giant storms in Jupiter’s southern hemisphere powered by warm air rising in their centers.

The Little Red Spot is the only survivor among three white-colored storms that merged together. In the 1940s, the three storms were seen forming in a band slightly below the Great Red Spot. In 1998, two of the storms merged into one, which then merged with the third storm in 2000. In 2005, amateur astronomers noticed that this remaining, larger storm was changing color, and it became known as the Little Red Spot after becoming noticeably red in early 2006.

The new Hubble observations by the team reveal that winds in the Little Red Spot have grown stronger compared to previous observations. In 1979, Voyager 1 and 2 flew by Jupiter and recorded that top winds were only about 268 miles per hour in one of the “parent” storms that merged to become the Little Red Spot. Nearly 20 years later, the Galileo orbiter revealed that top wind speeds were still the same in the parent storm, but winds in the Great Red Spot blew at up to 400 miles per hour. The team used Hubble’s new Advanced Camera for Surveys instrument to discover that top wind speeds in both storms are now the same, because this instrument has enough resolution to track small features in these storms, revealing their wind speeds.

Scientists are not sure why the Little Red Spot is growing stronger. One possibility is a change in size. These storms naturally fluctuate in size, and their winds spin around their central core of rising air. If the storm were to become smaller, its spiraling winds would increase the same way spinning ice skaters turn faster by pulling their arms closer to their bodies. Another possibility is that it’s the only survivor. “The lack of other large storms in the same latitude on Jupiter leaves more energy to feed the Little Red Spot,” said Simon-Miller.

According to the team, the increased intensity of the Little Red Spot probably explains why it changed color. It is likely to be behaving like the Great Red Spot for two reasons: it has the same wind speed and the team’s color analysis showed that it really is the same color as the Great Red Spot. It’s probably pulling up gaseous material from far below that changes color when exposed to ultraviolet radiation in sunlight. The question remains whether the storm is pulling up something that it wasn’t before, because its increased intensity allows it to reach deeper, or whether it is pulling up the same material but the higher winds allow the storm to hold it aloft longer, increasing the time it is exposed to solar ultraviolet light and turning it red.

The team could confirm exactly what the red material is if they are able to use a technique called spectroscopy in future observations of the Little Red Spot. Spectroscopy is an analysis of the light given off by an object. Each element and chemical gives a unique signal – brightness at specific colors or wavelengths. Identifying these signals reveals an object’s composition.

However, spectroscopy of Jupiter’s atmosphere is complicated because it has many chemicals that could turn red if exposed to ultraviolet light. “We need to simulate different possible Jupiter atmospheres in a lab so we can discover what spectrometric signals they give. We will then have something to compare with the actual spectrometric signal,” said Simon-Miller.

The team includes Simon-Miller, Dr. Nancy J. Chanover and Michael Sussman of New Mexico State University, Las Cruces, N.M.; Dr. Glenn S. Orton of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; Irene G. Tsavaris of the University of Maryland, College Park; and Dr. Erich Karkoschka of the University of Arizona, Tucson.

Original Source: NASA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Astronomers Find a 3 Million Year Old Planet

Astronomers have just found one of the youngest planets ever. At only 3 million years…

19 hours ago

There was Hot Water on Mars 4.45 Billion Years Ago

Mars formed 4.5 billion years ago, roughly the same time as the Earth. We know…

23 hours ago

Axion Dark Matter May Make Spacetime Ring

Dark matter made out of axions may have the power to make space-time ring like…

1 day ago

Earth’s Old Trees Keep A Record of Powerful Solar Storms

Most of the time the Sun is pretty well-mannered, but occasionally it's downright unruly. It…

2 days ago

New Supercomputer Simulation Explains How Mars Got Its Moons

One mystery in planetary science is a satisfying origin story for Mars's moons, Phobos and…

2 days ago

The Early Universe May Have Had Giant Batteries of Dust

The largest magnetic fields in the universe may have found themselves charged up when the…

2 days ago