For millennia, scientists have pondered the mystery of life – namely, what goes into making it? According to most ancient cultures, life and all existence was made up of the basic elements of nature – i.e. Earth, Air, Wind, Water, and Fire. However, in time, many philosophers began to put forth the notion that all things were composed of tiny, indivisible things that could neither be created nor destroyed (i.e. particles).
However, this was a largely philosophical notion, and it was not until the emergence of atomic theory and modern chemistry that scientists began to postulate that particles, when taken in combination, produced the basic building blocks of all things. Molecules, they called them, taken from the Latin “moles” (which means “mass” or “barrier”). But used in the context of modern particle theory, the term refers to small units of mass.
By its classical definition, a molecule is the smallest particle of a substance that retains the chemical and physical properties of that substance. They are composed of two or more atoms, a group of like or different atoms held together by chemical forces.
It may consist of atoms of a single chemical element, as with oxygen (O2), or of different elements, as with water (H2O). As components of matter, molecules are common in organic substances (and therefore biochemistry) and are what allow for life-giving elements, like liquid water and breathable atmospheres.
Molecules are held together by one of two types of bonds – covalent bonds or ionic bonds. A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. And the bond they form, which is the result of a stable balance of attractive and repulsive forces between atoms, is known as covalent bonding.
Ionic bonding, by contrast, is a type of chemical bond that involves the electrostatic attraction between oppositely charged ions. The ions involved in this kind of bond are atoms that have lost one or more electrons (called cations), and those that have gained one or more electrons (called anions). In contrast to covalence, this transfer is termed electrovalance.
In the simplest of forms, covelant bonds take place between a metal atom (as the cation) and a nonmetal atom (the anion), leading to compounds like Sodium Chloride (NaCl) or Iron Oxide (Fe²O³) – aka. salt and rust. However, more complex arrangements can be made too, such as ammonium (NH4+) or hydrocarbons like methane (CH4) and ethane (H³CCH³).
Historically, molecular theory and atomic theory are intertwined. The first recorded mention of matter being made up of “discreet units” began in ancient India where practitioners of Jainism espoused the notion that all things were composed of small indivisible elements that combined to form more complex objects.
In ancient Greece, philosophers Leucippus and Democritus coined the term “atomos” when referring to the “smallest indivisible parts of matter”, from which we derive the modern term atom.
Then in 1661, naturalist Robert Boyle argued in a treatise on chemistry – titled “The Sceptical Chymist“- that matter was composed of various combinations of “corpuscules”, rather than earth, air, wind, water and fire. However. these observations were confined to the field of philosophy.
It was not until the late 18th and early 19th century when Antoine Lavoisier’s Law of Conservation of Mass and Dalton’s Law of Multiple Proportions brought atoms and molecules into the field of hard science. The former proposed that elements are basic substances that cannot be broken down further while the latter proposed that each element consists of a single, unique type, of atom and that these can join together to form chemical compounds.
A further boon came in 1865 when Johann Josef Loschmidt measured the size of the molecules that make up air, thus giving a sense of scale to molecules. The invention of the Scanning Tunneling Microscope (STM) in 1981 allowed for atoms and molecules to be observed directly for the first time as well.
Today, our concept of molecules is being refined further thanks to ongoing research in the fields of quantum physics, organic chemistry and biochemistry. And when it comes to the search for life on other worlds, an understanding of what organic molecules need in order to emerge from the combination of chemical building blocks, is essential.
We have written many interesting articles about molecules for Universe Today. Here’s Molecules From Space May Have Affected Life On Earth, Prebiotic Molecules May Form in Exoplanet Atmospheres, Organic Molecules Found Outside our Solar System, ‘Ultimate’ Prebiotic Molecules Found in Interstellar Space.
For more information, check out Encyclopaedia Britannica‘s page on molecules.
We’ve also recorded an entire episode of Astronomy Cast all about Molecules in Space. Listen here, Episode 116: Molecules in Space.
Sources:
Theoretically a neutron star could have less mass than a white dwarf. If these light…
The James Webb Space Telescope (JWST) was specifically intended to address some of the greatest…
The James Webb Space Telescope was designed and built to study the early universe, and…
Titan is one of the solar system's most fascinating worlds for several reasons. It has…
Catching the best sky watching events for the coming year 2025. Comet C/2023 A3 Tsuchinshan-ATLAS…
For decades cosmologists have wondered if the large-scale structure of the universe is a fractal:…