Many objects in the solar system have strong magnetic fields which deflect the charged particles of the solar wind, creating a bubble known as the magnetosphere. On Earth, this protects us from some of the more harmful solar rays and diverts them to create beautiful aurorae. Similar displays have been found to occur on the gas giants. However, many other objects in our solar system lack the ability to produce these effects, either because they don’t have a strong magnetic field (such as Venus), or an atmosphere with which the charged particles can interact (such as Mercury).
Although the moon lacks both of these, a new study has found that the moon may still produce localized “mini-magnetospheres”. The team responsible for this discovery is an international team composed of astronomers from Sweden, India, Switzerland, and Japan. It is based on observations from the Chandrayaan-1 spacecraft produced and launched by the Indian Space Research Organisation (ISRO).
Using this satellite, the team was mapping the density of backscattered hydrogen atoms that come from solar wind striking the surface and being reflected. Under normal conditions, 16-20% of incoming protons from the solar wind is reflected in this way.
For those excited above 150 electron volts, the team found a region near the Crisium antipode (the region directly opposite the Mare Crisium on the moon). This region was previously discovered to have magnetic anomalies in which the local magnetic field strength reached several hundred nanotesla. The new team found that the result of this was that incoming solar wind was deflected, creating a shielded region some 360 km in diameter surrounded by a “300-km-thick region of enhanced plasma flux that results from the solar wind flowing 23 around the mini-magnetosphere.” Although the flow bunches up, the team finds that the lack of a distinct boundary means that there is not likely to be a bow shock, which would be created as the buildup becomes sufficiently strong to directly interact with additional incoming particles.
Below energies of 100 eV, the phenomenon seems to disappear. The researchers suggest this points to a different formation mechanism. One possibility is that some solar flux breaks through the magnetic barrier and is reflected creating these energies. Another is that, instead of hydrogen nuclei (which composes the majority of the solar wind) this is the product of alpha particles (helium nuclei) or other heavier solar wind ions striking the surface.
Not discussed in the paper is just how valuable such features could be to future astronauts looking to create a base on the moon. While the field is relatively strong for local magnetic fields, it it still around two orders of magnitude weaker than that of Earth’s. Thus, it is unlikely that this effect would be sufficiently strong to protect a base, nor would it provide protection from the x-rays and other dangerous electromagnetic radiation that is provided by an atmosphere.
Instead, this finding poses more in the way of scientific curiosity and can help astronomers map local magnetic fields as well as investigate the solar wind if such mini-magnetospheres are located on other bodies. The authors suggest that similar features be searched for on Mercury and asteroids.
Through the Artemis Program, NASA will send the first astronauts to the Moon since the…
New research suggests that our best hopes for finding existing life on Mars isn’t on…
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…