First colour images from MRO. Image credit: NASA/JPL-Caltech/University of Arizona. Click to enlarge.
The first full colour photographs are back from NASA’s Mars Reconnaissance Orbiter, and they’re big and beautiful. The photos were actually taken in the infrared spectrum, so this isn’t what the human eye would see – the colouring was done on computer. The spacecraft was 2,493 kilometers (1,549 miles) above the surface of Mars when it captured this image. It’ll be getting much closer in the coming months, so the photos are only going to get better.
This is the first color image of Mars from the High Resolution Imaging Science Experiment on NASA’s Mars Reconnaissance Orbiter. At the center portion of the camera’s array of light detectors there are extra detectors to image in green and near-infrared color bandpasses, to be combined with the black-and-white images (from red-bandpass detectors) to create color images. This is not natural color as seen by human eyes, but infrared color — shifted to longer wavelengths. This image also has been processed to enhance subtle color variations. The southern half of the scene is brighter and bluer than the northern half, perhaps due to early-morning fog in the atmosphere. Large-scale streaks in the northern half are due to the action of wind on surface materials. The blankets of material ejected from the many small fresh craters are generally brighter and redder than the surrounding surface, but a few are darker and less red. Two greenish spots in the middle right of the scene may have an unusual composition, and are good future targets for the Compact Reconnaissance Imaging Spectrometer for Mars, a mineral-identifying instrument on Mars Reconnaissance Orbiter ( http://crism.jhuapl.edu/). In the bottom half of the image we see a redder color in the rough areas, where wind and sublimation of water or carbon dioxide ice have partially eroded patches of smooth-textured deposits.
This image was taken by HiRISE on March 24, 2006. The image is centered at 33.65 degrees south latitude, 305.07 degrees east longitude. It is oriented such that north is 7 degrees to the left of up. The range to the target was 2,493 kilometers (1,549 miles). At this distance the image scale is 2.49 meters (8.17 feet) per pixel, so objects as small as 7.5 meters (24.6 feet) are resolved. In total this image is 49.92 kilometers (31.02 miles) or 20,081 pixels wide and 23.66 kilometers (14.70 miles) or 9,523 pixels long. The image was taken at a local Mars time of 07:33 and the scene is illuminated from the upper right with a solar incidence angle of 78 degrees, thus the sun was 12 degrees above the horizon. At an Ls of 29 degrees (with Ls an indicator of Mars’ position in its orbit around the sun), the season on Mars is southern autumn.
Images from the High Resolution Imaging Science Experiment and additional information about the Mars Reconnaissance Orbiter are available online at: http://www.nasa.gov/mro or http://HiRISE.lpl.arizona.edu. For information about NASA and agency programs on the Web, visit: http://www.nasa.gov.
JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona.
Original Source: NASA/JPL News Release
One explanation for dark matter is that it's made out of primordial black holes, formed…
The seasonal variations of methane in the Martian atmosphere is an intriguing clue that there…
For decades, astronomers have used powerful instruments to capture images of the cosmos in various…
Although the outer Solar System is mostly empty, there are icy objects drifting within the…
A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…
About 370,000 years after the Big Bang, the Universe had cooled down so light could…