Categories: Cosmology

Shedding New Light on the Cosmic Dark Ages

[/caption]

From a University of Cambridge press release:

Remnants of the first stars have helped astronomers get closer to unlocking the “dark ages” of the cosmos. A team of researchers from the University of Cambridge and California Institute of Technology are using light emitted from massive black holes called quasars to “light up” gases released by the early stars, which exploded billions of years ago. As a result, they have found what they refer to as the missing link in the evolution of the chemical universe.

The first stars are believed to hold the key to one of the mysteries of the early cosmos: how it evolved from being predominantly filled with hydrogen and helium to a universe rich in heavier elements, such as oxygen, carbon and iron.

However, although telescopes can detect light reaching Earth from billions of light-years away, enabling astronomers to look back in time over almost all of the 13.7-billion-year history of the universe, one observational frontier remains: the so-called “dark ages.” This period, lasting half a billion years after the Big Bang, ended when the first stars were born and is inaccessible to telescopes because the clouds of gas that filled the universe were not transparent to visible and infrared light.

“We have effectively been able to peer into the dark ages using the light emitted from a quasar in a distant galaxy billions of years ago. The light provides a backdrop against which any gas cloud in its path can be measured,” said Professor Max Pettini at Cambridge’s Institute of Astronomy (IoA), who led the research with PhD student Ryan Cooke.

Taking precision measurements using the world’s largest telescopes in Hawaii and Chile, the researchers have used Quasar Absorption Line Spectroscopy to identify gas clouds called ‘damped Lyman alpha systems’ (DLAs). Among the thousands of DLAs known, the team have succeeded in finding a rare cloud released from a star very early in the history of the universe.

“As judged by its composition, the gas is a remnant of a star that exploded as much as 13 billion years ago,” Pettini explained. “It provides the first analysis of the interior of one of the universe’s earliest stars.”

The results provide experimental observations of a time that has so far been possible to model only with computers simulations, and will help astronomers to fill gaps in understanding how the chemical universe evolved.

“We discovered tiny amounts of elements present in the cloud in proportions that are very different from their relative proportions in normal stars today. Most significantly, the ratio of carbon to iron is 35 times greater than measured in the Sun,” Pettini said. “The composition enables us to infer that the gas was released by a star 25 times more massive than the Sun and originally consisting of only hydrogen and helium. In effect this is a fossil record that provides us with a missing link back to the early universe.”

The study was published in Monthly Notices of the Royal Astronomical Society by Ryan Cooke, Max Pettini and Regina Jorgenson at the IoA, together with Charles Steidel and Gwen Rudie at the California Institute of Technology in Pasadena.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

28 minutes ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

1 hour ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

2 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

6 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

9 hours ago

How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous…

21 hours ago