Categories: Astronomy

Most Distant Galaxy Cluster Discovered


An international team of astronomers have used ESA’s XMM-Newton X-Ray observatory to image the most distant galaxy cluster ever seen. This cluster contains hundreds of galaxies, and is located nearly 10 billion light-years from Earth, so it’s seen when the Universe was less than 4 billion years old. Its existence challenges current theories about galaxy evolution – a structure this large shouldn’t exist so early in the Universe.

The most distant cluster of galaxies yet has been discovered by astronomers from the U.S., Europe and Chile. The finding was announced at the 208th American Astronomical Society meeting in Calgary, June 5.

Almost 10 billion light-years from Earth, cluster XMM-XCS 2215-1734 contains hundreds of galaxies surrounded by hot X-ray-emitting gas.

The existence of the cluster so early in the history of the universe challenges ideas about how galaxies formed, said lead author Adam Stanford, a research scientist at UC Davis and the Lawrence Livermore National Laboratory.

“It’s like finding a picture of your grandfather as an adult in the nineteenth century — how could he have existed so long ago?” Stanford said.

Using the temperature of the X-ray emitting gas, Kivanc Sabirli, a graduate student at Carnegie Mellon University, determined that the cluster is approximately 500 trillion times the mass of our sun. Most of the mass is “dark matter,” a mysterious, invisible form of matter that dominates the mass of all galaxies in the universe.

The XMM Cluster Survey (XCS) team used observations from the European X-ray Multi Mirror (XMM) Newton satellite to discover the cluster and then determined its distance from Earth using the 10-meter W.M. Keck telescope in Hawaii. The team is working on a long-term observing program to find hundreds more such clusters using telescopes around the world.

In addition to Stanford and Sabirli, the research team includes: Kathy Romer, University of Sussex, U.K.; Michael Davidson and Robert G. Mann, University of Edinburgh and the Royal Observatory Edinburgh, U.K.; Matt Hilton and Christopher A. Collins, Liverpool John Moores University, U.K.; Pedro T.P. Viana, Universidade do Porto, Portugal; Scott T. Kay, Oxford University, U.K.; Andrew R. Liddle, University of Sussex, U.K.; Christopher J. Miller, National Optical Astronomy Observatory, Tucson; Robert C. Nichol, University of Portsmouth, U.K.; Michael J. West, University of Hawaii and the Gemini Observatory, Chile; Christopher J. Conselice, University of Nottingham, U.K.; Hyron Spinrad, UC Berkeley; Daniel Stern, Jet Propulsion Laboratory; and Kevin Bundy, California Institute of Technology. The work was funded by NASA, the Particle Physics and Astronomy Research Council (U.K.), the Hosie Bequest, and the National Science Foundation.

Original Source: UC Davis News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

New Study Examines Cosmic Expansion, Leading to a New Drake Equation

In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…

8 minutes ago

Pentagon’s Latest UFO Report Identifies Hotspots for Sightings

The Pentagon office in charge of fielding UFO reports says that it has resolved 118…

34 minutes ago

A New Way to Detect Daisy Worlds

The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…

1 hour ago

Two Supermassive Black Holes on the Verge of a Merger

Researchers have been keeping an eye on the center of a galaxy located about a…

4 hours ago

Interferometry Will Be the Key to Resolving Exoplanets

When it comes to telescopes, bigger really is better. A larger telescope brings with it…

5 hours ago

A New Mission To Pluto Could Answer the Questions Raised by New Horizons

Pluto may have been downgraded from full-planet status, but that doesn't mean it doesn't hold…

6 hours ago