[/caption]
Astronomers have long suspected that something must stymie actively growing black holes, because most galaxies in the local universe don’t have them. Now, the Gemini Observatory has captured a galactic check-and-balance — a large-scale quasar outflow in the galaxy Markarian 231 that appears to be depriving a supermassive black hole its diet of gas and dust.
The work is a collaboration between David Rupke of Rhodes College in Tennessee and the University of Maryland’s Sylvain Veilleux. The results are to be published in the March 10 issue of The Astrophysical Journal Letters.
Markarian 231 (12h56’14.23″ +56d52’25.24″) is located about 600 million light-years away in the direction of the constellation of Ursa Major. Although its mass is uncertain, some estimates indicate that Mrk 231 has a mass in stars about three times that of the Milky Way, and its central black hole is estimated to have a mass of at least 10 million solar masses or also about three times that of the supermassive black hole in the Milky Way.
Theoretical modeling specifically points to quasar outflows as the counterbalance to black hole growth. In this negative feedback loop, while the black hole is actively acquiring mass as a quasar, the outflows carry away energy and material, suppressing further growth. Small-scale outflows had been observed before, but none sufficiently powerful to account for this predicted and fundamental aspect of galaxy evolution. The Gemini observations provide the first clear evidence for outflows powerful enough to support the process necessary to starve the galactic black hole and quench star formation by limiting the availability of new material.
Study author Veilleux says Mrk 231 is an ideal laboratory for studying outflows caused by feedback from supermassive black holes: “This object is arguably the closest and best example that we know of a big galaxy in the final stages of a violent merger and in the process of shedding its cocoon and revealing a very energetic central quasar. This is really a last gasp of this galaxy; the black hole is belching its next meals into oblivion!” As extreme as Mrk 231’s eating habits appear, Veilleux adds that they are probably not unique: “When we look deep into space and back in time, quasars like this one are seen in large numbers, and all of them may have gone through shedding events like the one we are witnessing in Mrk 231.”
Although Mrk 231 is extremely well studied, and known for its collimated jets, the Gemini observations exposed a broad outflow extending in all directions for at least 8,000 light-years around the galaxy’s core. The resulting data reveal gas (characterized by sodium, which absorbs yellow light) streaming away from the galaxy center at speeds of over 1,000 kilometers per second. At this speed, the gas could go from New York to Los Angeles in about 4 seconds. This outflow is removing gas from the nucleus at a prodigious rate — more than 2.5 times the star formation rate. The speeds observed eliminate stars as the possible “engine” fueling the outflow. This leaves the black hole itself as the most likely culprit, and it can easily account for the tremendous energy required.
The energy involved is sufficient to sweep away matter from the galaxy. However, “when we say the galaxy is being blown apart, we are only referring to the gas and dust in the galaxy,” notes Rupke. “The galaxy is mostly stars at this stage in its life, and the outflow has no effect on them. The crucial thing is that the fireworks of new star formation and black hole feeding are coming to an end, most likely as a result of this outflow.”
Source: Gemini press release. The paper appears here. See also some galactic merger animations, courtesy of the Harvard-Smithsonian Center for Astrophysics.
Like a performer preparing for their big finale, a distant star is shedding its outer…
For a little over a month now, the Earth has been joined by a new…
Despite decades of study, black holes are still one of the most puzzling objects in…
74 million kilometres is a huge distance from which to observe something. But 74 million…
Astronomers have only been aware of fast radio bursts for about two decades. These are…
How do you weigh one of the largest objects in the entire universe? Very carefully,…