Categories: Guide to Space

Magnetic Levitation

[/caption]Overcoming the pull of gravity and fighting acceleration are major challenges for scientists looking to achieve flight and/or high-speed transportation. One way that they overcome this is the modern and growing technology known as Magnetic Levitation. Relying on rare earth magnets, superconductors, electromagnets and diamagnets, magnetic levitation is now used for maglev trains, magnetic bearings and for product display purposes. Today, maglev transportation is one of the fastest growing means of transportation in industrialized countries. This method has the potential to be faster, quieter and smoother than wheeled mass transit systems and the power needed for levitation is usually not a particularly large percentage of the overall consumption; most of it being used to overcome air drag. In William Gibson’s novel Spook Country, maglev technology was also featured in the form of a “maglev bed”, a bed which used magnets to stay suspended in midair.

Magnetic levitation (aka. maglev or magnetic suspension) is the method by which an object is suspended with no support other than magnetic fields. According to Earnshaw’s theorem (a theory which is usually referenced to magnetic fields), it is impossible to stably levitate against gravity relying solely on static ferromagnetism. However, maglev technology overcomes this through a number of means. These include, but are not limited to, mechanical constraint (or pseudo-levitation), diamagnetism levitation, superconductors, rotational stabilization, servomechanisms, induced currents and strong focusing.

Pseudo-levitation relies on two magnets that are mechanically arranged to repel each other strongly, or are attracted but constrained from touching by a tensile member, such as a string or cable. Another example is the Zippe-type centrifuge where a cylinder is suspended under an attractive magnet, and stabilized by a needle beading from below. Diamagnetic levitation occurs when diamagnetic material is placed in close proximity to material that produces a magnetic field, thus repelling the diamagnetic material. Superconductor-levitation is achieved much the same way, superconductors being a perfect diamagne. Due to the Meissner effect, superconductors also have the property of having completely expelled their magnetic fields, allowing for further stability.

The first commercial maglev people mover was simply called “MAGLEV” and officially opened in 1984 near Birmingham, England. It operated on an elevated 600-metre (2,000 ft) section of monorail track between Birmingham International Airport and Birmingham International railway station, running at speeds up to 42 km/h (26 mph). Perhaps the most well-known implementation of high-speed maglev technology currently in operation is the Shanghai Maglev Train, a working model of the German-built Transrapid train that transports people 30 km (19 mi) to the airport in just 7 minutes 20 seconds, achieving a top speed of 431 km/h and averaging 250 km/h.

We have written many articles about magnetic levitation for Universe Today. Here’s an article about the uses of electromagnets, and here’s an article about how magnets work.

If you’d like more info on the magnetic levitation, check out these articles from How Stuff Works and Hyperphysics.

We’ve also recorded an entire episode of Astronomy Cast all about Magnetism. Listen here, Episode 42: Magnetism Everywhere.

Sources:
http://en.wikipedia.org/wiki/Magnetic_levitation
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/maglev.html
http://www.rare-earth-magnets.com/t-magnetic-levitation.aspx
http://en.wikipedia.org/wiki/Earnshaw%27s_theorem
http://en.wikipedia.org/wiki/Maglev_train
http://en.wikipedia.org/wiki/Meissner_effect

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

1 hour ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

3 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

4 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

4 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

9 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

11 hours ago