A New Way to Visualize Warped Space and Time

[/caption]

Trying to understand the warping of space and time is something like visualizing a scene from Alice in Wonderland where rooms can change sizes and locations. The most-used description of the warping of space-time is how a heavy object deforms a stretched elastic sheet. But in actuality, physicists say this warping is so complicated that they really haven’t been able to understand the details of what goes on. But new conceptual tools that combines theory and computer simulations are providing a better way to for scientists to visualize what takes place when gravity from an object or event changes the fabric of space.

Researchers at Caltech, Cornell University, and the National Institute for Theoretical Physics in South Africa developed conceptual tools that they call tendex lines and vortex lines which represent gravitation waves. The researchers say that tendex and vortex lines describe the gravitational forces caused by warped space-time and are analogous to the electric and magnetic field lines that describe electric and magnetic forces.

“Tendex lines describe the stretching force that warped space-time exerts on everything it encounters,” said says David Nichols, a Caltech graduate student who came up with the term ‘tendex.’. “Tendex lines sticking out of the Moon raise the tides on the Earth’s oceans, and the stretching force of these lines would rip apart an astronaut who falls into a black hole.”

Vortex lines, on the other hand, describe the twisting of space. So, if an astronaut’s body is aligned with a vortex line, it would get wrung like a wet towel.

Two spiral-shaped vortexes (yellow) of whirling space sticking out of a black hole, and the vortex lines (red curves) that form the vortexes. Credit: The Caltech/Cornell SXS Collaboration

They tried out the tools specifically on computer simulated black hole collisions, and saw that such impacts would produce doughnut-shaped vortex lines that fly away from the merged black hole like smoke rings. The researchers also found that a bundle of vortex lines spiral out of the black hole like water from a rotating sprinkler. Depending on the angles and speeds of the collisions, the vortex and tendex lines — or gravitational waves — would behave differently.

“Though we’ve developed these tools for black-hole collisions, they can be applied wherever space-time is warped,” says Dr. Geoffrey Lovelace, a member of the team from Cornell. “For instance, I expect that people will apply vortex and tendex lines to cosmology, to black holes ripping stars apart, and to the singularities that live inside black holes. They’ll become standard tools throughout general relativity.”

The researchers say the tendex and vortex lines provide a powerful new way to understand the nature of the universe. “Using these tools, we can now make much better sense of the tremendous amount of data that’s produced in our computer simulations,” says Dr. Mark Scheel, a senior researcher at Caltech and leader of the team’s simulation work.

Their paper has been published in the April 11 in the Physical Review Letters.

Source: CalTech

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

3 hours ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

19 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

20 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

3 days ago