Early Stars Were Whirling Dervishes

[/caption]

Even though some of the first stars in the early universe were massive, they probably lived fast and furious lives, as they likely rotated much faster than their present-day counterparts. A new study on stellar evolution looked at a 12-billion-year-old star cluster and found high levels of metal in the stars – a chemical signature that suggests that the first stars were fast spinners.

“We think that the first generations of massive stars were very fast rotators – that’s why we called them spinstars,” said Cristina Chiappini of the Astrophysical Institute Potsdam in Germany, who led the team of astronomers.

These first generation stars died out long ago, and our telescopes can’t look back in time far enough to actually see them, but astronomers can get a glimpse of what they were like by looking at the chemical makeup of later stars. The first stars’ chemical imprints are like fossil records that can be found in the oldest stars we can study.

The general understanding of the early universe is that soon after the Big Bang, the Universe was made of essentially just hydrogen and helium. The chemical enrichment of the Universe with other elements had to wait around 300 million years until the fireworks started with the death of the first generations of massive stars, putting new chemical elements into the primordial gas, which later were incorporated in the next generations of stars.

Using data from ESO’s Very Large Telescope (VLT), the astronomers reanalyzed spectra of a group of very old stars in the Galactic Bulge. These stars are so old that only very massive, short-living stars with masses larger than around ten times the mass of our Sun should have had time to die and to pollute the gas from which these fossil records then formed. As expected, the chemical composition of the observed stars showed elements typical for enrichment by massive stars. However, the new analysis unexpectedly also revealed elements usually thought to be produced only by stars of smaller masses. Fast-rotating massive stars on the other hand would succeed in manufacturing these elements themselves.

“Alternative scenarios cannot yet be discarded – but – we show that if the first generations of massive stars were spinstars, this would offer a very elegant explanation to this puzzle!” said Chiappini.

A star that spins more rapidly can live longer and suffer different fates than slow-spinning ones. Fast rotation also affects other properties of a star, such as its colour, and its luminosity. Spinstars would therefore also have strongly influenced the properties and appearance of the first galaxies which were formed in the Universe. The existence of spinstars is now also supported by recent hydrodynamic simulations of the formation of the first stars of the universe by an independent research group.

Chiappini and her team are currently working on extending the stellar simulations in order to further test their findings. Their work is published in a Nature article on April 28, 2011.

Source: University of Potsdam, Nature

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 hours ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

11 hours ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

20 hours ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

1 day ago

Archaeology On Mars: Preserving Artifacts of Our Expansion Into the Solar System

In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…

1 day ago

Building the Black Hole Family Tree

Many of the black holes astronomers observe are the result of mergers from less massive…

1 day ago