Categories: supernova

New Class of Stellar Explosion Sings the Blues

[/caption]

A team of astronomers led by the California Institute of Technology (Caltech) have discovered a new, ultra-bright class of supernova – and it really sings the blues. Possibly one of the most luminous observable objects in the Cosmos, these new types of stellar explosions may help us better understand the origins of starbirth, unravel the mysteries of distant galaxies and even look back into the beginnings of our Universe…

“We’re learning about a whole new class of supernovae that wasn’t known before,” says Robert Quimby, a Caltech postdoctoral scholar and the lead author on a paper to be published in the June 9 on-line issue of the journal Nature. Not only did the team locate four instances of this new class, but the study also helped them unravel the questions behind two previously known supernovae which apparently belong in the same category.

As a graduate student at the University of Texas, Austin, Quimby came to the astronomy forefront in 2007 when he reported the brightest supernova ever found: 100 billion times brighter than the sun and 10 times brighter than most other supernovae. At the time, it was a record. Categorized as 2005ap, it had a rather strange spectral signature – a lack of hydrogen. But Quimby wasn’t the only one in the “class” doing homework, because the Hubble Space Telescope also detected an enigmatic event listed as SCP 06F6. It, too, had an unusual spectrum, but nothing led researchers to surmise it to be similar to 2005ap.

Enter Shri Kulkarni, Caltech’s John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science and a coauthor on the paper. They enlisted Quimby as a a founding member of the Palomar Transient Factory (PTF) – a project which scans the skies for unrecorded incident flashes of light which could signal possible supernova. With the eye of the 1.2-meter Samuel Oschin Telescope at Palomar Observatory, the colleagues went on to discover an additional four new supernovae events. Measuring the spectra with the 10-meter Keck telescopes in Hawaii, the 5.1-meter telescope at Palomar, and the 4.2-meter William Herschel Telescope in the Canary Islands, the astronomers discovered that all four objects had an unusual spectral signature. Quimby then realized that if you slightly shifted the spectrum of 2005ap—the supernova he had found a couple of years earlier—it looked a lot like these four new objects. The team then plotted all the spectra together. “Boom—it was a perfect match,” he recalls.

From there it didn’t take long to learn to sing the blues. The astronomers quickly figured out that by shifting the spectrum of SCP 06F6 caused it to align with previous findings. The results showed all six supernovae to be a similar type – all with very blue spectra – with the brightest wavelengths shining in the ultraviolet. This was the missing link that connected the two previously unexplained supernovae. “That’s what was most striking about this—that this was all one unified class,” says Mansi Kasliwal, a Caltech graduate student and coauthor on the Nature paper.

Even though astronomers now know these supernovae are related, the rest remains a mystery. “We have a whole new class of objects that can’t be explained by any of the models we’ve seen before,” Quimby says. “What we do know about them is that they are bright and hot—10,000 to 20,000 Kelvin; that they are expanding rapidly at 10,000 kilometers per second; that they lack hydrogen; and that they take about 50 days to fade away—much longer than most supernovae, whose luminosity is often powered by radioactive decay. So there must be some other mechanism that’s making them so bright.”

What could they be? One simulation leads to a pulsational pair-instability and the next points towards a magnetar. No matter what the answer is, the result is the illumination aids astronomers in studying distant dwarf galaxies, allowing them to measure the spectrum of the interstellar gas and uncover their composition. The findings could also “shed light” on what ancient stars may have been like… stretching back into the very beginnings of our Universe. “It is really amazing how rich the night sky continues to be,” Kulkarni says. “In addition to supernovae, the Palomar Transient Factory is making great advances in stellar astronomy as well.”

Original Story Source: California Institute of Technology.

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

You Can Build a Home Radio Telescope to Detect Clouds of Hydrogen in the Milky Way

If I ask you to picture a radio telescope, you probably imagine a large dish…

45 mins ago

A Space Walking Robot Could Build a Giant Telescope in Space

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then…

1 day ago

New Report Details What Happened to the Arecibo Observatory

In 1963, the Arecibo Observatory became operational on the island of Puerto Rico. Measuring 305…

2 days ago

We Understand Rotating Black Holes Even Less Than We Thought

The theory of black holes has several mathematical oddities. Recent research shows our understanding of…

2 days ago

Habitable Worlds are Found in Safe Places

When we think of exoplanets that may be able to support life, we hone in…

2 days ago

New Glenn Booster Moves to Launch Complex 36

Nine years ago, Blue Origin revealed the plans for their New Glenn rocket, a heavy-lift…

2 days ago