Categories: Space Exploration

Kerosene Engine Passes Design Milestone

Image credit: NASA

NASA is working on several next-generation propulsion concepts that could help to push future exploration of the solar system, and one of the furthest along is the RS-84 kerosene-fueled rocket engine. The RS-84 is being designed by the Rocketdyne division of Boeing and it recently passed a detailed technical design review. The final, full-scale prototype engine should be ready for testing in 2007. Kerosene is more compact than traditional hydrogen fuel, saving launch weight, and it’s much safer to handle.

The kerosene-fueled RS-84 engine, one of several technologies competing to power NASA’s next generation of launch vehicles, has successfully completed its preliminary design review.

The RS-84 is a reusable, liquid booster engine that will deliver a thrust level of 1 million pounds of force. The design of the prototype engine is being developed by the Rocketdyne Propulsion & Power Division of the Boeing Company, in Canoga Park, Calif., for NASA’s Next Generation Launch Technology Program.

The program, part of NASA’s Space Launch Initiative, seeks to develop key space launch technologies ? engines and propulsion systems, hardware and integrated launch systems ? that will provide the foundation for America’s future space fleet.

The preliminary design review is a lengthy technical analysis that evaluates engine design according to stringent system requirements. The review ensures development is on target to meet Next Generation Launch Technology program goals: improved safety, reliability and cost. The review is conducted when the engine design is approximately 50 percent complete and engine drawings are approximately 10 percent complete.

“We’ve cleared our first major hurdle and the foundation is set for ensuring delivery of a safe, cost effective engine that will meet the next-generation launch requirements of NASA and the Department of Defense,” said Danny Davis, project manager for the RS-84 project at NASA’s Marshall Space Flight Center in Huntsville, Ala.

“We have a highly experienced team working on this unique design challenge,” Davis added. “I am very proud of the creativity offered by Rocketdyne, and of the thorough, constructive analysis provided by NASA’s insight team.”

The design team’s next major program milestone is the “40k” preburner test, a series of test-firings of a nearly full-scale preburner yielding 40,000 pounds of thrust. The test series, which will be conducted at NASA’s Stennis Space Center in Bay St. Louis, Miss., is scheduled to be completed in September. The final RS-84 prototype is expected to begin full-scale test firing by the end of 2007.

The RS-84 is one of two competing efforts now under way to develop an alternative to conventional, hydrogen-fueled engine technologies. The RS-84 is a reusable, staged combustion rocket engine fueled by kerosene ? a relatively low-maintenance fuel with high performance and high density, meaning it takes less fuel-tank volume to permit greater propulsive force than other technologies. That benefit translates to more compact engine systems, easier fuel handling and loading on the ground, and shorter turnaround time between launches. All these gains, in turn, reduce the overall cost of launch operations, making routine space flight cheaper and more attractive to commercial enterprises.

“No engine yet conceived meets the expectations of high reliability, high reusability mission life and responsiveness that is part of the RS-84 design,” Davis said. “Our design incorporates the latest in materials development, advanced software to monitor and predict problems, and lessons learned from past engine technology efforts.”

“The RS-84 preliminary design was shown to satisfy NASA’s goals, supporting an order of magnitude improvement in safety/reliability and operating cost,” said Roger Campbell, deputy program manager of Boeing Rocketdyne’s RS-84 engine team.

NASA’s Next Generation Launch Technology Program is developing and demonstrating innovative technologies in the areas of propulsion, systems integration and launch operations. The work of the program is intended to yield complete, next-generation space transportation systems that will provide low-cost space access and reinvigorate the U.S. space launch market, enabling stronger competition with international space agencies and private commercial entities, enabling stronger domestic and international competition.

Original Source: NASA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Astronomers Find a Black Hole Tipped Over on its Side

Almost every large galaxy has a supermassive black hole churning away at its core. In…

21 minutes ago

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

16 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

17 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago