Categories: Cosmology

New Simulation Shows How the Universe Evolved

Bolshoi Simulation

How has the universe evolved over time? A new supercomputer simulation has provided what scientists say is the most accurate and detailed large cosmological model of the evolution of the large-scale structure of the universe. Called the Bolshoi simulation, and it gives physicists and astronomers a powerful new tool for understanding cosmic mysteries such as galaxy formation, dark matter, and dark energy.

If the simulation is right, it is showing that the standard cosmological model is fairly spot-on.

“These huge cosmological simulations are essential for interpreting the results of ongoing astronomical observations and for planning the new large surveys of the universe that are expected to help determine the nature of the mysterious dark energy,” said Anatoly Klypin, from New Mexico State University, who wrote the computer code for the simulation, which was run on the Pleiades supercomputer at NASA Ames Research Center.

The simulation traces the evolution of the large-scale structure of the universe, including the evolution and distribution of the dark matter halos in which galaxies coalesced and grew. Initial studies show good agreement between the simulation’s predictions and astronomers’ observations.

“In one sense, you might think the initial results are a little boring, because they basically show that our standard cosmological model works,” said co-leader Joel Primack, from the University of California, Santa Cruz. “What’s exciting is that we now have this highly accurate simulation that will provide the basis for lots of important new studies in the months and years to come.”

The simulation is based on data from the WMAP mission that has been mapping the light of the Big Bang in the entire sky. A comparison of the Bolshoi predictions with galaxy observations from the Sloan Digital Sky Survey showed very good agreement, said Primack.

The standard explanation for how the universe evolved after the Big Bang is known as the Lambda Cold Dark Matter model, and it is the theoretical basis for the Bolshoi simulation. According to this model, gravity acted initially on slight density fluctuations present shortly after the Big Bang to pull together the first clumps of dark matter. These grew into larger and larger clumps through the hierarchical merging of smaller progenitors. Although the nature of dark matter remains a mystery, it accounts for about 82 percent of the matter in the universe. As a result, the evolution of structure in the universe has been driven by the gravitational interactions of dark matter. The ordinary matter that forms stars and planets has fallen into the “gravitational wells” created by clumps of dark matter, giving rise to galaxies in the centers of dark matter halos.

A series of papers has been put out from the Bolshoi simulation, including one that looks at the characteristics of the dark matter halos and another that looks at the abundance and properties of galaxies predicted by the Bolshoi simulation of dark matter.

See more at the Bolshoi Simulation website.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

12 hours ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

21 hours ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

1 day ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

1 day ago

Archaeology On Mars: Preserving Artifacts of Our Expansion Into the Solar System

In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…

2 days ago

Building the Black Hole Family Tree

Many of the black holes astronomers observe are the result of mergers from less massive…

2 days ago