Looking For the City Lights of Alien Civilizations

[/caption]

When most people think about the search for alien life, the first thing that usually pops into mind is SETI (Search for Extraterrestrial Intelligence). Primarily a search for extraterrestrial radio signals, another more recent facet of SETI is now looking for laser pulses as a conceivable means of communication across interstellar distances. But now, a third option has been presented: looking for sources of artificial light on the surfaces of exoplanets, like the lights of cities on Earth.

According to Avi Loeb at the Harvard-Smithsonian Center for Astrophysics, “Looking for alien cities would be a long shot, but wouldn’t require extra resources. And if we succeed, it would change our perception of our place in the universe.”

Like the other SETI initiatives, it relies on an assumption that an alien civilization would use technologies that are similar to ours or at least recognizable. That assumption itself has been the subject of contentious debate over the years. If an alien society was thousands or millions of years more advanced than us, would any of its technology even be recognizable to us?

That aside, how easy (or not) would it be to spot the signs of artificial lighting on an alien planet light-years away from us? The suggestion is to look at the changes in light from an exoplanet as it orbits its star. Artificial light would increase in brightness on the dark side of a planet as it orbits the star (as the planet goes through its phases, like our Moon or other planets in our own solar system), becoming more visible than any light that is reflected from the day side.

That type of discovery will require the next generation of telescopes, but today’s telescopes could test the idea, being able to find something similar as far out as the Kuiper Belt in our solar system, where Pluto and thousands of other small icy bodies reside. As noted by Edwin Turner at Princeton University, “It’s very unlikely that there are alien cities on the edge of our solar system, but the principle of science is to find a method to check. Before Galileo, it was conventional wisdom that heavier objects fall faster than light objects, but he tested the belief and found they actually fall at the same rate.”

The paper has been submitted to the journal Astrobiology and is available here.

Paul Scott Anderson

Paul Scott Anderson is a freelance space writer with a life-long passion for space exploration and astronomy and has been a long-time member of The Planetary Society. He currently writes for Universe Today and Examiner.com. His own blog The Meridiani Journal is a chronicle of planetary exploration.

Recent Posts

Space Tourism: The Good, The Bad, The Meh

Space tourism here is here to stay, and will likely remain a permanent fixture of…

3 hours ago

New Study Examines Cosmic Expansion, Leading to a New Drake Equation

In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…

18 hours ago

Pentagon’s Latest UFO Report Identifies Hotspots for Sightings

The Pentagon office in charge of fielding UFO reports says that it has resolved 118…

18 hours ago

A New Way to Detect Daisy Worlds

The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…

19 hours ago

Two Supermassive Black Holes on the Verge of a Merger

Researchers have been keeping an eye on the center of a galaxy located about a…

21 hours ago

Interferometry Will Be the Key to Resolving Exoplanets

When it comes to telescopes, bigger really is better. A larger telescope brings with it…

23 hours ago