[/caption]
It’s a given. It won’t be long until human technology will expand our repertoire of cataloged exoplanets to astronomical levels. Of these, a huge number will be considered within the “habitable zone”. However, isn’t it a bit egotistical of mankind to assume that life should be “as we know it”? Now astrobiologists/scientists like Dirk Schulze-Makuch with the Washington State University School of Earth and Environmental Sciences and Abel Mendez from the University of Puerto Rico at Aricebo are suggesting we take a less limited point of view.
“In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability.” says Schulze-Makuch (et al). “The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time.”
Right now, an international science team representing NASA, SETI,the German Aerospace Center, and four universities are ready to propose two major questions dealing with our quest for life – both as we assume and and alternate. According to the WSU news release:
“The first question is whether Earth-like conditions can be found on other worlds, since we know empirically that those conditions could harbor life,” Schulze-Makuch said. “The second question is whether conditions exist on exoplanets that suggest the possibility of other forms of life, whether known to us or not.”
Within the next couple of weeks, Schulze-Makuch and his nine co-authors will publish a paper in the Astrobiology journal outlining their future plans for exoplanet classification. The double approach will consist of an Earth Similarity Index (ESI), which will place these newly found worlds within our known parameters – and a Planetary Habitability Index (PHI), that will account for more extreme conditions which could support surrogate subsistence.
“The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature.” explains the team. “For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions.”
Assuming that life could only exist on Earth-like planets is simply narrow-minded thinking, and the team’s proposal and modeling efforts will allow them to judiciously filter new discoveries with speed and high level of probability. It will allow science to take a broader look at what’s out there – without being confined to assumptions.
“Habitability in a wider sense is not necessarily restricted to water as a solvent or to a planet circling a star,” the paper’s authors write. “For example, the hydrocarbon lakes on Titan could host a different form of life. Analog studies in hydrocarbon environments on Earth, in fact, clearly indicate that these environments are habitable in principle. Orphan planets wandering free of any central star could likewise conceivably feature conditions suitable for some form of life.”
Of course, the team admits an alien diversity is surely a questionable endeavor – but why risk the chance of discovery simply on the basis that it might not happen? Why put a choke-hold on creative thinking?
“Our proposed PHI is informed by chemical and physical parameters that are conducive to life in general,” they write. “It relies on factors that, in principle, could be detected at the distance of exoplanets from Earth, given currently planned future (space) instrumentation.”
Original News Source: WSU News. For Further Reading: A Two-Tiered Approach to Assessing the Habitability of Exoplanets.
Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…
Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…
A team of astronomers have detected a surprisingly fast and bright burst of energy from…
Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…
In 1971, the Soviet Mars 3 lander became the first spacecraft to land on Mars,…
Many of the black holes astronomers observe are the result of mergers from less massive…