[/caption]
A unique type of crystal appears to have its origins in meteorites, according to a new study. Quasicrystals are an unusual type of crystalline structure that were initially thought to have only occurred in artificial conditions in labs, and impossible in nature, until they were found by geologists in the Koryak mountains in Russia in 2009. Their origin was unknown, but now new evidence indicates that they most likely came from space in meteorites, dating back to the early stages of the formation of the solar system.
Regular crystals, such as diamonds, snowflakes and salt, are symmetrical, ordered and repeating geometrical arrangements of atoms that extend in all three spatial dimensions (at both microscopic and macroscopic scales); they are commonly found in different types of rock. Quasicrystals are different however, with variations from the standard structure and composition.
When the newly found quasicrystals were studied, they were found to be composed primarily of copper and aluminum, similar to carbonaceous meteorites. The clincher came when the isotope measurements (ratios of oxygen atoms) indicated an extraterrestrial origin.
From the paper:
“Our evidence indicates that quasicrystals can form naturally under astrophysical conditions and remain stable over cosmic timescales.”
“The rock sample was first identified for study as a result of a decade-long systematic search for a natural quasicrystal (4). Quasicrystals are solids whose atomic arrangement exhibits quasi-periodic rather than periodic translational order and rotational symmetries that are impossible for ordinary crystals (5) such as fivefold symmetry in two-dimensions and icosahedral symmetry in three-dimensions. Until recently, the only known examples were synthetic materials produced by melting precise ratios of selected elemental components and quenching under controlled conditions (6–8). The search consisted of applying a set of metrics for recognizing quasicrystals to a database of powder diffraction data (4) and examining minerals outside the database with elemental compositions related to those of known synthetic quasicrystals.”
“What is clear, however, is that this meteoritic fragment is not ordinary. Resolving the remarkable puzzles posed by this sample will not only further clarify the origin of the quasicrystal phase but also shed light on previously unobserved early solar system processes. Fitting all these clues together in a consistent theory of formation and evolution of the meteorite is the subject of an ongoing investigation.”
The report has been published in the January 2 issue of Proceedings of the National Academy of Science. The article (PDF) is here. More detailed information about quasicrystals is also available here and here.
Although the outer Solar System is mostly empty, there are icy objects drifting within the…
A stellar odd couple 700 light-years away is creating a chaotically beautiful display of colourful,…
About 370,000 years after the Big Bang, the Universe had cooled down so light could…
Space tourism here is here to stay, and will likely remain a permanent fixture of…
In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…
The Pentagon office in charge of fielding UFO reports says that it has resolved 118…