Categories: AstronomyMissions

Clusters of Stars Crackle and Pop to Tell the Story of Star Formation

[/caption]

Astronomers trying to understand the formation of massive clusters of stars are getting a better idea of how the process works from the latest images and data from the WISE spacecraft. NASA’s Wide-Field Infrared Survey Explorer has captured a vast stretch of nearly a dozen nebulae popping with new star birth, which is helping to narrow the field of possible star-forming scenarios.

“We are trying to understand how huge clusters of stars form at the same time from a large cloud of gas,” said Xavier Koenig from Goddard Space Flight Center, speaking at a press briefing from the American Astronomical Society meeting this week. “We have two possible pictures of how this process works and WISE is helping us piece together the chain of events.”

WISE has mapped the entire sky two times in infrared light, and the astronomers selected a sample of regions to find young stars and map their distributions to try and determine how these large clusters formed. For both possible scenarios, a cluster of stars begin to form at the center of a huge cloud of gas. But what happens next? The first potential situation, called Model 1, is “collect and collapse,” Koenig said, where the stars create a hot bubble of gas which surrounds the stars. “This bubble gathers up material and after a time enough gas builds up that the next generation of stars appears.”

Model 2 is called “chain reaction,” where as bubble of gas progresses outward, stars are continually formed, and there is no gap between the births of stars.

In looking at several of the star-forming nebulae, Koenig and his colleagues noticed a pattern in the spatial arrangement of newborn stars. Some were found lining the blown-out cavities, a phenomenon that had been seen before, but other new stars were seen sprinkled throughout the cavity interiors. The results suggest that stars are born in a successive fashion, one after the other, starting from a core cluster of massive stars and moving steadily outward. This lends support to “chain reaction” star formation theory, and offers new clues about the physics of the process.

The astronomers also found evidence that the bubbles seen in the star-forming clouds can spawn new bubbles. In this scenario, a massive star blasts away surrounding material, which eventually triggers the birth of another star massive enough to carve out its own bubble. A few examples of what may be first- and second-generation bubbles can be seen in the new WISE image.

“Massive stars sweep up and destroy their natal clouds, but they continuously spark new stars to form along the way,” said co-author Dave Leisawitz, the WISE Mission Scientist. “Occasionally a new, massive star forms, perpetuating the sequence of events and giving rise to the dazzling fireworks display seen in this WISE mosaic.”

Since young stars are brighter in infrared, WISE is the perfect telescope to be searching for these massive star-forming regions.
“WISE data is good for this kind of study because the infrared lights up right where these star-forming regions are doing their work – they pop out immediately to your eye,” said Koenig. “I can’t wait to look at more of the WISE sky coverage.”

See a larger version of the new WISE mosaic here.

Sources: JPL, AAS press briefing

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

James Webb Confirms Hubble’s Calculation of Hubble’s Constant

We have been spoiled over recent years with first the Hubble Space Telescope (HST) and…

14 hours ago

What Should Light Sails Be Made Out Of?

The Breakthrough Starshot program aims to cross the immense distances to the nearest star in…

15 hours ago

A Giant Meteorite Impact 3.26 Billion Years Ago Helped Push Life Forward

The Earth has always been bombarded with rocks from space. It’s true to say though…

16 hours ago

America’s Particle Physics Plan Spans the Globe — and the Cosmos

RALEIGH, N.C. — Particle physicist Hitoshi Murayama admits that he used to worry about being…

1 day ago

Millions of Phones Could Map the Earth’s Ionosphere

We are all familiar with the atmosphere of the Earth and part of this, the…

1 day ago

Detecting Primordial Black Hole Mergers Might be Within Our Grasp

One explanation for dark matter is that it's made out of primordial black holes, formed…

2 days ago