Microlensing Study Says Every Star in the Milky Way has Planets

[/caption]

How common are planets in the Milky Way? A new study using gravitational microlensing suggests that every star in our night sky has at least one planet circling it. “We used to think that the Earth might be unique in our galaxy,” said Daniel Kubas, a co-lead author of a paper that appears this week in the journal Nature. “But now it seems that there are literally billions of planets with masses similar to Earth orbiting stars in the Milky Way.”

Over the past 16 years, astronomers have detected more than 3,035 exoplanets – 2,326 candidates and 709 confirmed planets orbiting other stars. Most of these extrasolar planets have been discovered using the radial velocity method (detecting the effect of the gravitational pull of the planet on its host star) or the transit method (catching the planet as it passes in front of its star, slightly dimming it.) Those two methods usually tend to find large planets that are relatively close to their parent star.

But another method, gravitational microlensing — where the light from the background star is amplified by the gravity of the foreground star, which then acts as a magnifying glass — is able to find planets over a wide range of mass that are further away from their stars.

Gravitational microlensing method requires that you have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass.

An international team of astronomers used the technique of gravitational microlensing in six-year search that surveyed millions of stars. “We conclude that stars are orbited by planets as a rule, rather than the exception,” the team wrote in their paper.

“We have searched for evidence for exoplanets in six years of microlensing observations,” said lead author Arnaud Cassan from the Institut de Astrophysique in Paris. “Remarkably, these data show that planets are more common than stars in our galaxy. We also found that lighter planets, such as super-Earths or cool Neptunes, must be more common than heavier ones.”

The Milky Way above the dome of the Danish 1.54-metre telescope at ESO's La Silla Observatory in Chile. The central part of the Milky Way is visible behind the dome of the ESO 3.6-metre telescope in the distance. On the right the Magellanic Clouds can be seen. This telescope was a major contributor to the PLANET project to search for exoplanets using microlensing. The picture was taken using a normal digital camera with a total exposure time of 15 minutes. Credit: ESO/Z. Bardon

The astronomers surveyed millions of stars looking for microlensing events, and 3,247 such events in 2002-2007 were spotted in data from the European Southern Observatory’s PLANET and OGLE searches. The precise alignment needed for microlensing is very unlikely, and statistical results were inferred from detections and non-detections on a representative subset of 440 light curves.

Three exoplanets were actually detected: a super-Earth and planets with masses comparable to Neptune and Jupiter. The team said that by microlensing standards, this is an impressive haul, and that in detecting three planets, they were either incredibly lucky despite huge odds against them, or planets are so abundant in the Milky Way that it was almost inevitable.

The astronomers then combined information about the three positive exoplanet detections with seven additional detections from earlier work, as well as the huge numbers of non-detections in the six years’ worth of data (non-detections are just as important for the statistical analysis and are much more numerous, the team said.) The conclusion was that one in six of the stars studied hosts a planet of similar mass to Jupiter, half have Neptune-mass planets and two thirds have super-Earths.

This works out to about 100 billion exoplanets in our galaxy.

The survey was sensitive to planets between 75 million kilometers and 1.5 billion kilometers from their stars (in the Solar System this range would include all the planets from Venus to Saturn) and with masses ranging from five times the Earth up to ten times Jupiter.

This also shows that microlensing is a viable way to find exoplanets. Astronomers hope to use other methods in the future to find even more planets.

“I have a list of 17 different ways to find exoplanets and only five have been used so far,” said Virginia Trimble from the University of California, Irvine and the Las Cumbres Observatory, providing commentary at the American Astronomical Scoeity meeting this week, “I expect we’ll be finding many more planets in the future.”

Sources: Nature, ESO, AAS briefing

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

4 hours ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

5 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

6 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

6 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

11 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

13 hours ago