Take a Ride on a Rocket Sled To Test Supersonic Decelerators

Landing large payloads on Mars — large enough to bring humans to the Red Planet’s surface — is still beyond our capability. “There’s too much atmosphere on Mars to land heavy vehicles like we do on the moon, using propulsive technology completely,” said Rob Manning, Chief Engineer for the Mars Exploration Directorate, in an article we wrote a few years ago about the problems of landing on Mars “and there’s too little atmosphere to land like we do on Earth. Mars atmosphere provides an ugly, grey zone.”

The best hope on the horizon for making the human missions to Mars possible are supersonic decelerators that are now being developed. This new technology will hopefully be able to slow larger, heavier landers from the supersonic speeds of atmospheric entry to subsonic ground-approach speeds. NASA’s Low Density Supersonic Decelerator (LDSD) program is testing out some of these new devices and recently performed a trial run on a rocket sled test to replicate the forces a supersonic spacecraft would experience prior to landing. The sled tests will see how inflatable and parachute decelerators work to slow spacecraft prior to landing and allow NASA to increase landed payload masses, as well as improve landing accuracy and increase the altitude of safe landing-sites.

[/caption]

Three devices are being developed: two different sizes of supersonic inflatable aerodynamic decelerators and super-huge parachutes. The supersonic inflatable decelerators are very large, durable, balloon-like pressure vessels that inflate around the entry vehicle and slow it from Mach 3.5 or greater to Mach 2. These decelerators are being developed in 6-meter-diameter and 9-meter-diameters.

The large parachute is 30 meters in diameter, and it will further slow the entry vehicle from Mach 2 to subsonic speeds. All three devices will be the largest of their kind ever flown at speeds several times greater than the speed of sound.

Together, these new drag devices can increase payload delivery to the surface of Mars from our current capability of 1.5 metric tons to 2 to 3 metric tons, depending on which inflatable decelerator is used in combination with the parachute. They will increase available landing altitudes by 2-3 kilometers, increasing the accessible surface area we can explore. They also will improve landing accuracy from a margin of 10 kilometers to just 3 kilometers. All these factors will increase the capabilities and robustness of robotic and human explorers on Mars.

NASA is now testing these devices on rocket sleds and later will conduct tests high in Earth’s stratosphere, simulating entry into Mars’ thin atmosphere. The first supersonic flight tests are set for 2013 and 2014.

Find out more about the LDSD program here.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

16 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

17 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

3 days ago