[/caption]
The next launch of a NASA space mission is the Nuclear Spectroscopic Telescope Array, or NuSTAR. It study wide range of objects in space, from massive black holes to our own Sun, and will be the first space telescope to create focused images of cosmic X-rays with the highest energies.
“We will see the hottest, densest and most energetic objects with a fundamentally new, high-energy X-ray telescope that can obtain much deeper and crisper images than before,” said Fiona Harrison, the NuSTAR principal investigator, who has been working on this project for 20 years.
Meanwhile, NASA has cancelled another X-ray telescope, the Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray telescope, an astrophysics mission that was going to launch in 2014 to observe the space near neutron stars and black holes. GEMS failed meet a the qualifications of a confirmation review and was heading to go over budget.
“The decision was made to non-confirm GEMS,” said Paul Hertz, director of NASA’s Astrophysic Division, at a meeting of the National Research Council’s Committee on Astronomy and Astrophysics. “The rationale was that the pre-confirmation cost and schedule growth was too large.” The project was going well over the initial cost of $105 million and was facing a delay in launch.
But NuSTAR is scheduled to launch on June 13 from the Kwajalein Atoll in the Pacific Ocean near the equator. The X-ray space telescope will initially take off on a L-1011 “Stargazer” aircraft, and then launch in midair into orbit on a Pegasus XL rocket from Orbital Sciences.
The mission has been awaiting launch since March, when NASA delayed its liftoff pending a review of the rocket.
NuSTAR will work with other telescopes in space now, including NASA’s Chandra X-ray Observatory, which observes lower-energy X-rays. Together, they will provide a more complete picture of the most energetic and exotic objects in space, such as black holes, dead stars and jets traveling near the speed of light.
This new observatory looks with X-rays similar to the X-rays used in hospitals and airports, but the telescope will have more than 10 times the resolution and more than 100 times the sensitivity of previous telescopes.
“NuSTAR uses several innovations for its unprecedented imaging capability and was made possible by many partners,” said Yunjin Kim, the project manager for the mission at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “We’re all really excited to see the fruition of our work begin its mission in space.”
NuSTAR has an innovative design using a nested shell of mirrors to provide better focus. It also has state-of-the-art detectors and a large 33-foot (10-meter) mast, which connects the detectors to the nested mirrors, providing the long distance required to focus the X-rays. This mast is folded up into a canister small enough to fit atop the Pegasus launch vehicle. It will unfurl about seven days after launch. About 23 days later, science operations will begin.
The mission will focus on studying the formation of black holes and investigate how exploding stars forge the elements that make up planets and people, along with study the Sun’s atmosphere.
Sources: JPL Space News (GEMS)
In 1960, in preparation for the first SETI conference, Cornell astronomer Frank Drake formulated an…
The Pentagon office in charge of fielding UFO reports says that it has resolved 118…
The Daisy World model describes a hypothetical planet that self-regulates, maintaining a delicate balance involving…
Researchers have been keeping an eye on the center of a galaxy located about a…
When it comes to telescopes, bigger really is better. A larger telescope brings with it…
Pluto may have been downgraded from full-planet status, but that doesn't mean it doesn't hold…