NuSTAR Successfully Deploys Huge Mast

Nine days after launch — and right on schedule — the newest space mission has deployed its unique mast, giving it the ability to see the highest energy X-rays in our universe. The Nuclear Spectroscopic Telescope Array, or NuSTAR, successfully deployed its lengthy 10-meter (33-foot) mast on June 21, and mission scientists say they are one step closer to beginning its hunt for black holes hiding in our Milky Way and other galaxies.

“It’s a real pleasure to know that the mast, an accomplished feat of engineering, is now in its final position,” said Yunjin Kim, the NuSTAR project manager at the Jet Propulsion Laboratory. Kim was also the project manager for the Shuttle Radar Topography Mission, which flew a similar mast on the Space Shuttle Endeavor in 2000 and made topographic maps of Earth.

NuSTAR will search out the most elusive and most energetic black holes, to help in our understanding of the structure of the universe.

NuSTAR has many innovative technologies to allow the telescope to take the first-ever crisp images of high-energy X-ray, and the long mast separates the telescope mirrors from the detectors, providing the distance needed to focus the X-rays.

This is the first deployable mast ever used on a space telescope; the mast was folded up in a small canister during launch.

At 10:43 a.m. PDT (1:43 p.m. EDT) engineers at NuSTAR’s mission control at UC Berkeley in California sent a signal to the spacecraft to start extending the mast, a stable, rigid structure consisting of 56 cube-shaped units. Driven by a motor, the mast steadily inched out of a canister as each cube was assembled one by one. The process took about 26 minutes. Engineers and astronomers cheered seconds after they received word from the spacecraft that the mast was fully deployed and secure.

The NuSTAR team will now begin to verify the pointing and motion capabilities of the satellite, and fine-tune the alignment of the mast. In about five days, the team will instruct NuSTAR to take its “first light” pictures, which are used to calibrate the telescope.
Less than 20 days later, science operations are scheduled to begin.

“With its unprecedented spatial and spectral resolution to the previously poorly explored hard X-ray region of the electromagnetic spectrum, NuSTAR will open a new window on the universe and will provide complementary data to NASA’s larger missions, including Fermi, Chandra, Hubble and Spitzer,” said Paul Hertz, NASA’s Astrophysics Division Director.

NuSTAR launched on an Orbital Science Corporation’s Pegasus rocket, which was dropped from a carrier plane, the L-1011 “Stargazer,” also from Orbital.

Lead image caption: Artist’s concept of NuSTAR in orbit. NuSTAR has a 33-foot (10-meter) mast that deploys after launch to separate the optics modules (right) from the detectors in the focal plane (left). Image credit: NASA/JPL-Caltech

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

7 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

8 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

1 day ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

2 days ago